GNSS Aviation Applications

UN/China/ESA Training on the Use and Application of GNSS Beijing China December 4-8, 2006

Alice Wong Senior Advisor US State Department

Aviation Navigation Evolution

- International Civil Aviation Organization (ICAO) Structure For Future Air Navigation Is Global Navigation Satellite System (GNSS) Capability
- Components Of GNSS:
 - Satellite Position, Velocity, and Time Constellation(s)
 - Global Positioning Systems (GPS), U.S. Operational
 - GLONASS, Russian Federation Not Operationally Usable
 - Galileo, European Union Not Operational
 - Augmentation Systems
 - Aircraft Based Augmentation Systems (ABAS)
 - Satellite Based Augmentation Systems (SBAS)
 - Ground Based Augmentation Systems (GBAS)
 - GNSS Regional Augmentation Systems (GRAS)

GNSS

Using GPS Today, Immediate Implementation Of GNSS In Aviation Is Possible

- Performance Based Operations: Utilizing All GNSS Capabilities
 Of The Aircraft To The Fullest Extent Possible
- Area Navigation (RNAV): Flying Efficient Direct Routings
- Instrument Approaches To All Runway Ends Without The Need For Most the Ground Navigation Equipment
 - Non-precision Only. No Vertical Guidance
 - High End Aircraft Can Provide Vertical Guidance Through Aircraft Based Barometric-Vertical Navigation (VNAV)
- GNSS Based Required Navigation Performance (RNP)
 - Precise Navigation Capability
 - Permits Efficient Operations In Terrain Constrained Or Congested Airspace

GNSS In United States

- U.S. Has Approved Use of GPS For Aircraft Navigation For Over A Decade
- FAA GNSS Activities
 - Participates In Management Of GPS To Insure Aviation Requirements Are Sustained
 - Working With Other U.S. Federal Government Agencies To Insure Modernization of GPS Improves Aviation Capabilities
 - Implementing RNP
 - Commissioned the FAA's GNSS SBAS
 - Wide Area Augmentation System (WAAS)
 - Continuing Development Of the GNSS GBAS
 - Local Area Augmentation System (LAAS)
 - Committed To Performance Based National Airspace System

Moving To a Performance Based NAS

 FAA's Goal Is To **Design An Integrated**, **Performance Based National Airspace System That Can Meet** The Needs Of **Tomorrow And Satisfy** ICAO's Vision Of A Safe, Secure, And Seamless International **Air Transportation System**

What Is "Performance-Based" Navigation?

- An End-to-End Air Transportation System Based On Performance Standards Rather Than Specific Technologies Or Equipment
 - Area Navigation (RNAV)
 - Required Navigation Performance (RNP)
- Recognizes The Ability Of Modern Aircraft To Operate Safely And Efficiently Using A Variety Of On-Board Systems and External Signals

FAA Roadmap for Performance-Based Navigation

- Divided into three planning periods
 - Near-term 2003 to 2006
 - Implementation of public RNAV and RNP procedures in all phases of flight
 - Development of enabling criteria and guidance for more advanced RNAV and RNP operations
 - Mid-term 2007 to 2012
 - RNAV becomes the predominant means of navigation in the NAS
 - Removal of some ground-based navaids as a result of increasing number of RNP procedures
 - Advanced navigation capability enables improvements in airspace design based on applicable route spacing, separation minima, new sectors and terminal airspace structures
 - Far-term 2013 to 2020
 - Application of RNP becomes mandatory in some airspace
 - Significant capacity and efficiency gains through airspace restructuring
 - Minimal operational network of ground-based navaids used as a backup

FAA Satellite Navigation Programs

- Stand-alone Global Positioning System (GPS) with Certified Avionics
- Augmented GPS
 - FAA's Wide Area
 Augmentation System
 (WAAS)
 - FAA's Local Area
 Augmentation System
 (LAAS)

Automatic Dependent Surveillance (ADS-B)

• Safety Benefits

- Improved situational awareness both in the aircraft and ATC
- Reduced runway incursions through the use of surface surveillance and navigation
- Search and rescue
- New services in non-radar airspace enabling access to airports
- Operational Efficiency/Capacity Benefits
 - Higher air traffic throughput due to reduced separation
 - Optimized flight levels and routes
 - More efficient airline dispatch and control

Int'l Cooperation... A Necessity

• U.S. Assigned Airspace Equals 77 million Square Kilometers

GPS Aviation Ops Approvals

International SBAS Coverage

Backup Slides

Additional GNSS-Based Applications

Federal Aviation Administration

GNSS Location Based Services

Cargo Fleet Tracking

- Improves safety and security

Fleet Control/Dispatch

- Fuel savings
- Improves asset management

Emergency Operations

- Reduces response times
- Reduces injury & property loss
- Road Maintenance
- In Vehicle Navigation
 - Accurate position determination
 - Reduces air pollution

GNSS Positive Train Control

- Situational Awareness
- Enhances safety
 - Reduces accidents
- Increases capacity and efficiency
 - Closer train spacing reduces investments
 - Reduces fuel consumption
- Rapid rail structure and condition mapping
 - Improves maintenance capability

GNSS Maritime Applications

- Large ships, fishing & recreation boats
- Harbor entrance and approach
 Regardless of visibility
- Hydrographic Survey
- Buoy Positioning, etc.

GNSS Recreation Applications

Explore anywhere in the world

- Without getting lost or eaten!
- Your favorite fishing spot
 - Every time
- Try Geocaching
 - GPS treasure hunting

