UN/South Africa Training Course on Satellite Aided Search and Rescue

Cape Town, South Africa

20-24 November 2006

Low Cost Beacons and SSAS Cheryl Bertoia Cospas-Sarsat Secretariat Montreal

Source: CNES – D. Ducros

Low Cost Beacons...

- Phase-Out of 121.5 MHz Satellite Alerting Services
- Phase-Out of Inmarsat L-band EPIRB

What?

- Increased pressure to approve non-compliant beacons as "compatible"
- Are beacons already "low cost"?

What determines the cost of a 406 MHz beacon?

- Design / Manufacturing costs
 - electrical characteristics, compatibility with the satellite system
 - specified by Cospas-Sarsat
- Operations costs
 - installation and maintenance costs
 - specified by Administrations and organisations (e.g. RTCA, RTCM, EUROCAE)
- Testing and certification costs
 - spread over sales volume
- Price is affected by
 - market demand sales volume
 - level of competition
 - · decisions made at the national level

406 MHz Beacon Population Survey Results and Forecast to 2016

Future population growth affected by:

- 121.5 MHz processing phase-out
- international regulations, e.g. ICAO carriage requirements
- loss of L-band EPIRB alerting services

What determines the cost of a 406 MHz beacon?

- Document C/S T.001, "Specification for Cospas-Sarsat 406 MHz Distress Beacons" specifies:
 - minimum operating time (24 hours)
 - temperature range of operating conditions (Class 1: -40 ℃ to +55 ℃, Class 2: -20 ℃ to +55 ℃)
 - stability of the transmitted frequency
 - signal characteristics and power output required
 - antenna characteristics
 - etc.
- IMO/ICAO require an auxiliary 121.5 MHz radio-locating device at another frequency (T.001 does not)
- Cost of components to meet these specifications
 - more efficient components draw less power
 - standardization of components, e.g. prefabricated RF circuitry and GPS receiver modules
 - technology changes, e.g. oven-controlled (OCXO) vs. temperature compensated (TCXO) oscillators

Lower the Cost ?

- Components become less costly over time and market demand may increase
- Cospas-Sarsat conducted tests and determined that improvements in LUT processing allow relaxation of beacon medium term frequency requirement without impacting overall System performance
 - specifications were changed in 2003
 - allowed the introduction of the TCXO
- Other ideas...
 - reduce the required battery power
 - remove the auxiliary "homer"
 - change installation requirements, e.g. authorise use of PLBs (with G-switch?) rather than fixed ELTs

Transmission Frequency Stability

- Stability of the frequency of transmissions directly affects the accuracy of the Doppler location
- Medium term frequency stability is defined as the stability of the frequency of transmission over 15 minutes and is a cost driver (beacon's oscillator)

Minimum Operating Time

Compatible but not Compliant

- Proposed distress alerting device with an operating temperature range of +5°C to +50°C and a guarantied minimum life time of 16 hours
- At CSC-37 (Oct 2006), the Council decided that
 - no waiver could be issued for beacons/devices that did not meet the minimum operating temperature requirement of -20° C
 - the current Cospas-Sarsat policy did not allow granting letters of compatibility for commercial products aimed at the general public

Compatible but not Compliant

- IMO GMDSS EPIRBs 48 hour required transmit time
- C/S Letters of Compatibility have been issued:
 - when 24 hour minimum lifetime cannot be guaranteed in all circumstances (e.g. have an operator controlled ancillary device)
 - for devices to be used by trained military personnel, under the responsibility of the Administration

UKMCC: 19 Dec 2003 "It is an incredible system and no-one does it better... If the people who came for us did not have the proper co-ordinates they would never have found us."

--- Jennifer Murray

Beacons in the MEOSAR Era

- MEOSAR 2012
 - a highly stable transmit frequency will likely not be required for beacon location
 - may allow a change in transmission pattern, lowering battery power requirements
- Galileo's Return Link Service may drive development of new beacon technologies

NASA Search and Rescue Mission Office Distress Alerting Satellite System (DASS)

UN/South Africa Training Course: Satellite Aided SAR

MEOSAR Concept

UN/South Africa Training Course: Satellite Aided SAR

Ship Security Alert System

 Requirements for SSAS were outlined by IMO in SOLAS Chapter XI-2 "Special Measures to Enhance Maritime Security"

- C/S implemented an SSAS service based on 406 MHz transmitters as decided at CSC-31 (October 2003)
- Minimal modifications to the System were implemented and tested by the IMO required date (1 July 2004)

SSAS Implementation

- Two major elements: transmitter and a methodology for data distribution
- Modification to C/S document T.001 provides for:
 - Beacon coding protocol to indicate SSAS
 - Accurate GNSS encoded information
 - Requires the use of vessel MMSI for beacon identification
 - Prohibits the use of a 121.5 MHz homing device to make transmissions more covert

406 MHz Ship Security Alert System: Data Fields of the Long Message Format

	Bit Synchronization	Frame Synchronization	First Protected Data Field (PDF-1)			BCH-1	Second Protected Data Field (PDF-2)	BCH-2	
Unmodulated Carrier (160 ms)	Bit Synchronization Pattern	Frame Synchronization Pattern	For- mat Flag	Protocol Flag	Country Code	Identification plus Position Data	21-Bit BCH Code	Supplementary and Position	12-Bit BCH Code
Bit No.	1-15	16-24	25	26	27-36	37-85	86-106	107-132	133-144
	15 bits	9 bits	1 bit	1 bit	10 bits	49 bits	21 bits	26 bits	12 bits

C/S doc A.001 Table III/B/4: Protocol Validation C/S doc T.001 Table A.2: Protocol Code Assignment **Protocol Codes** Bits 37 - 40 = 1100 SHIP SECURITY

SAMPLE MESSAGE FOR SIT 185 406 MHz SHIP SECURITY ALERT (to be transmitted only to competent security authority) (LEOSAR - with encoded position)

1. 2.	SHIP SECURITY COSPAS-SARSAT POSITION RESOLVED ALERT MSG NO. 17002 UKMCC REF 12345	10.	NEXT PASS TIMES RESOLVED - 10 JUL 04 2201 UTC DOPPLER A - NIL DOPPLER B - NIL ENCODED - NIL
3.	DETECTED AT 10 JUL 04 2130 UTC BY SARSAT 09	11.	HEX ID 1D18BD50C0FFBFF
4.	DETECTION FREQUENCY 406.0281 MHZ	12.	ACTIVATION TYPE - MANUAL
5.	COUNTRY OF BEACON REGISTRATION 232/G.BRITAIN	13.	BEACON NUMBER ON AIRCRAFT OR VESSEL - NIL
6.	USER CLASS – <mark>SHIP SECURITY</mark> WITH ENCODED POSITION – MMSI LAST SIX DIGITS 387718	14.	OTHER ENCODED INFORMATION A. ENCODED POSITION ACCURACY - 4 SECONDS
7.	EMERGENCY CODE - NIL	15.	OPERATIONAL INFORMATION REGISTRATIONAL INFORMATION AT
8.	POSITIONS RESOLVED - 55 23.2N 022 29.9W DOPPLER A - 55 19.1N 022 25.4W DOPPLER B - ENCODED - 55 23.2N 022 27.0W		UKMCC TELEX: 75194 UKMCCK G AFTN: EGQPZSZX TELEPHONE: (44-1343) 836015
9.	UPDATE TIME UNKNOWN ENCODED POSITION PROVIDED BY EXTERNAL DEVICE	16.	REMARKS-This is a ship security alert. Process this alert according to relevant security requirements.
<i>.</i>		END OF MESS	•

20-24 November 2006

UN/South Africa Training Course: Satellite Aided SAR

Alert Distribution Procedure

... in the C/S system, the alert is processed according to the same procedures that apply for 406 MHz distress alerts except that the resulting ship security alert message is forwarded based only on the country code in the beacon message...

- The Cospas-Sarsat specification only deals with the electrical and transmission requirements that ensure the compatibility of the SSAS beacon with the satellite processing system
- Administrations should define national requirements for 406 MHz SSAS beacon activation and installation
- Administrations should register their "competent authority" with IMO and contact their supporting MCC to establish an appropriate method of distributing SSAS alerts

Currently...

- Two type-approved SSAS beacons are available for commercial sale
- Several Administrations have elected to use C/S as one approved method for ship security alerting

SSAS Population and Forecast

Country	2005	Forecast			
		2010	2015		
Algeria	11	NA	NA		
China	0	1,000	2,000		
Hong Kong	0	1,000	1,500		
Norway	0	50	100		
Thailand	0	50	50		
UK	0	500	1,000		
USA	7	500	1,000		
Total	18	3,100	5,560		

