

EGNOS/Galileo CO-OPERATION INITIATIVES

WITH AFRICA

Alexandre Steciw (GJU Senior Advisor)

The European strategy in satellite navigation

<u>Step 1</u>: EGNOS to provide civil complement to military GPS (and GLONASS), into initial operations from early 2006

European Geostationary Navigation Overlay Service

EGNOS is an initiative of the European Commission, Eurocontrol and ESA

Step 2: GALILEO is to achieve European sovereignty and service guarantees through dedicated system under civil control.

GALILEO is an initiative of the European Commission and ESA

EGNOS and Galileo are the European contributions to the global ICAO strategy on GNSS

- As such it offers a higher accuracy and reliability than GPS alone
- A key aspect for safety of life applications is integrity i.e. a warning of system malfunction that will reach the user within 6 s
- Across Europe, 34 monitoring stations monitor the GPS constellation. A control centre collects this data and broadcasts the integrity message to users via geostationary satellites.

- Africa's vicinity to Europe means that EGNOS coverage can be extended at marginal cost
 Lies within the footprint of the geostationary satellites
 Can make use of the European control centre for data processing and uploading to these satellites

CO-OPERATION ON GNSS WITH AFRICA

• Demonstrations already took place in co-operation with ASECNA for air navigation and SPOORNET for train control, using the EGNOS testbed in AFRICA

O Some other applications would also justify live demonstrations, in particular the provision of emergency messages through SBAS. A concept named ALIVE (Alert Interface Via EGNOS) is being promoted by ESA

Co-operation between Europe and Africa on GNSS

O Interlinked GNSS SBAS systems

- ✓ EGNOS over Europe
- Extension to MEDA region
- Regional hub in Middle East
- Inter-regional SBAS for AFI (ISA) for sub-Saharan Africa

Policy Context Co-operation between Europe and Africa on GNSS

- The policy context for the GNSS service implementation over Africa has developed taking into account three major elements:
 - ✓ International Civil Aviation Organisation (ICAO) GNSS policy
 - EU Development policy (Cotonou agreement) and the Euro-Mediterranean Partnership
 - ✓ European GNSS strategy
 - ✓ Need for a multimodal approach
- Africa's vicinity means that EGNOS coverage can be extended at marginal cost:
 - ✓ Within the footprint of the geostationary satellites
 - Use of the European control centre for data processing and uploading to these satellites

EGNOS and Galileo services for Aviation

Applications:

- En-route navigation
- Terminal Area navigation
- Approach and landing

Support to Airports Surface Movement Guidance

ICAO Standards:

✓EGNOS compliant with ICAO (International Civil Aviation Organisation) SARPS (Standards and Recommended Practices)

✓Galileo ICAO SARPS under development

ICAO GNSS strategy for Africa

Through ICAO's AFI Planning and Implementation Regional Group (APIRG), the AFI States decided on a GNSS Regional Strategy in 2001 (at APÍRG/13)

 based on a three phase implementation plan
 this was updated by the APIRG GNSS Implementation Task Force in 2005

✓ further supported by APIRG/15 (Sept 2005)

Includes completed EGNOS testbed trials

ICAO AFI GNSS Strategy					 	Assumes ISA	
	Phase I		Phase II	Phase III		implemen- tation	
Time scale	2000 - 2005		2006 - 2011	2012 - 2017			
Certification	Basic GNSS	Basic GNSS	from en route to APV-1	from en route to CAT I		Based on	
Oceanic/En route		GPS	GPS with EGNOS	Long term GNSS		Galileo	
Continental/E n route		GPS	GPS with EGNOS	Long term GNSS			
Terminal	GPS		GPS with EGNOS	Long term GNSS			
Approach and landing	(GPS/ Baro) NPA		APV-1 SBAS	SBAS CAT I CAT I GBAS CAT II/III GBAS			

What ISA means for Africa

Main benefits for civil aviation

- \checkmark Approach with vertical guidance replacing non-precision approaches at all airports
- ✓ Reliance on satellite-based navigation, reducing the cost and maintenance of ground-based navigation aids
- ✓ Improved harmonisation and safety across the AFI region.
- ✓ A reduction in the number of aircraft landing accidents on runways not currently equipped with operational instrument landing systems
- ✓ Cost savings through avoided diversions

Other benefits

✓ Strengthened regional economic integration and cooperation through the development of a Africa-wide institutional framework

✓Increased safety in transport operations (also for rail and maritime) in a cost-effective way

✓Possibility of implementing the ALIVE concept

ESTB RIMS in Africa

70 60 50 40 30 Latitude(deg) 20 10 0 -10 -20 -30 -40 -40 -30 -20 0 10 20 30 40 50 60 70 -10 Longitude(deg)

Avail. APV-I 09-Feb-2006 06:35:24 - 09-Feb-2006 07:35:24 GPS Time PRN-120

EGNOS STB Coverage

ASECNA demonstration

Crossing Africa using EGNOS over one week Demo day on May 19th 2005, in Nairobi (Kenya)

Media examples

AFRICA

An ATR 42 flew across the widest part of Africa-from Dakar, Senegal, to Mombasa, Kenya-in the most ambitious test to date using the European Geostationary Navigation Overlay Service (Egnos). Conducted by the European Space Agency and Agence Pour la Securite de la Navigation Aerienne en Afrique et a Madagascar, the 20-hr. flight used a Thales Avionics Egnos receiver to gather upgraded GPS data through a roof-mounted antenna. The flight demonstrated the Egnos extension over Africa, relying on the Egnos testbed signal broadcast through Inmarsat IOR-E.

Link to film

Aviation Week dated May 30th 2005

Weblinks

http://www.satexpo.it/en/news-new.php/9?c=55715&f=h http://www.talksatellite.com/EMEAedd139.htm http://www.eurekalert.org/pub_releases/2005-05/esa-caw051305.php http://www.eurekalert.org/features/kids/2005-05/esa-foa051705.php http://www.rin.org.uk/pooled/articles/BF NEWSART/view.asp?Q=BF NEWSART 159655 http://www.globalpositioningsystems.co.uk/news_article.php?article_id=244&PHPSESSID=7925b3 223d987ff3fddcf081c8ba6bef http://science.monstersandcritics.com/news/article 1002704.php/First trans-African flight with EGNOS a success http://www.bnsc.gov.uk/default.aspx?nid=5290 http://www.spacedaily.com/news/gps-euro-05e.html http://www.spacedaily.com/news/gps-euro-05h.html http://www.innovations-report.de/html/berichte/verkehr logistik/bericht-16795.html http://www.gisdevelopment.net/news/viewn.asp?id=GIS:N_uljewsmkbc http://www.blackanthem.com/scitech/2005051307.html http://www.spacenewsfeed.co.uk/2005/15May2005 10.html http://www.mercatorpark.de/unternehmen/?company=43&content=full&article=315&mpsid=b428 29aa336498febc832a44570bced5 http://www.eu-digest.com/2005/05/esa-crossing-africa-with-egnos.html http://www.isdefe.es/webisdefe.nsf/0/7513c1909abcae86c125700d0028beb3?OpenDocument

http://eu.spaceref.com/news/viewpr.html?pid=16959

African weblinks

West Africa News (link to Space Daily) http://cgi.wn.com/?SearchString=EGNOS&language=Any+Language&template=westafricanews% 2Findex.txt&action=search&first=0 Madagascar News (link to Space Daily) http://cgi.wn.com/?template=worldnews%2Fsearch.txt&action=search&first=0&SearchString=EG NOS Fly South http://www.flysouth.co.za/index.htm Flights Cameroon (link to Science daily) http://www.cyberhoods.com/country/info.asp-guide-Flights-state-Cameroon Tanzania Media (Space Daily) http://cgi.wn.com/?SearchString=EGNOS&language=Any+Language&template=tanzaniamedia%2 Findex.txt&action=search&first=0 Africa Time (Congo in French) http://www.africatime.com/maroc/nouv_pana.asp?no_nouvelle=190506&no_categorie=3 Kenya Times & Kenya Industry (powered by World News) http://archive.wn.com/2005/05/16/1400/kenyatimes/

EGNOS Testbed demonstrations

A demonstration of the use of EGNOS for advanced rail traffic management, especially on low-density rail lines
O Took place in Gauteng, South Africa on 24 November 2005
O Undertaken with collaboration of Spoornet, South Africa

The demo highlighted the capabilities that will be provided by the planned operational extension of EGNOS for Africa (ISA), and gave the participants a glimpse at future technologies in rail control systems

Objectives and audience

- To demonstrate use of EGNOS for advanced rail traffic management, especially on low-density rail lines
- EGNOS-based positioning technology can provide performances powerful enough to allow self-standing train location determination, without the need for trackside infrastructure.
- **O** Undertaken with collaboration of Spoornet, South Africa
- **O** Involved the Technology Division of Spoornet, but also aimed at other railway and port operators in Southern Africa
- **O** First demonstration of its kind in South Africa

INTEGRAIL Overview

• INTEGRAIL is a prototype mobile GPS/EGNOS telematics system

O *Provides train position, velocity and heading for rail applications*

O Developed by Keyser-Threde, Bombadier and IFEN

O Aimed mainly at safety-critical (train control and signalling), but also for non-safety critical applications (passenger info and fleet management)

INTEGRAIL Overview

Main Features of Positioning Components

GNSS I • high absolute accuracy, signal integrity enhanced by EGNOS • signal obscuration, multi-path **Odometer** Route Map high availability, Odometer good relative accuracy • relative measurement, drift, slip/slide **Inertial Sensor** GPS Inertial Sensor high availability, contact-less measurement • relative measurement, drift **Route Map** base for coordinates transformation, reference for integrity monitoring not standardized

Position/Velocity

Demonstration Location

- Demonstration Site at the National Exhibition Centre Sports Facilities (NASREC) Station, near Johannesburg, South Africa.
- A low priority separated track, i.e. without regular traffic and so no disruption.
- Preceeded by presentations at a Golf Club near the Station.

Demonstration Unit Interfaces

Participation

• Around 40 persons attended the demonstration with representation from

- **O** Spoornet
- **O** Metrorail (commuter rail company)
- **O** E-Freight (logistics company)
- **O** Alstrom ZA
- **O** Swaziland Railways
- **O** Southern African Rail Association
- **O** National Ports Authority, ZA
- O Air Traffic Navigation Services (ATNS) company, South Africa.

Demonstration Results

- During the runs, all tracks were correctly detect after points (switches).
- The trace of GPS/EGNOS positioning to the respective tracks is clearly shown in the following figure:

Note: Challenging track with many points (switches) as the tracks split to the west (left).

Conclusions

- The INTEGRAIL ZA rail demonstration of 24 November 2005 went extremely well and attendance was more than expected.
- The selected train scenario showed the benefits of EGNOS based navigation for railway traffic management and signaling regarding position/velocity determination.
- Successful demonstration on the complex NASREC rail line which showed the ability of INTEGRAIL to clearly distinguish between the many sets of parallel tracks. This is particularly challenging for safety related applications.
- An article of the demonstration appeared in the Jan 06 issue of "Inside GNSS" magazine and on ESA, KT and ESSP web sites.

The demo highlighted the capabilities that will be provided by the planned operational extension of EGNOS for Africa (ISA), and gave the participants a glimpse at future technologies in rail control systems

Lessons learnt

- Pre-testing in location of the INTEGRAIL system was very demanding – two trips were needed to solve technical problems
- This rail demo has opened up opportunities in other transport sectors – NPA requested further information on the use of EGNOS in the maritime domain
- Complemented by the Rail business case study also undertaken for ZA and involving Spoornet

European Geostationary Navigation Overlay Service

Provision of emergency communication messages through SBAS: The ESA ALIVE proposal

Prepared by: J.Ventura – Traveset, A.R. Marthur, European Space Agency,

Hans-Peter Plag, Univ. of Nevada, USA

European Space Agency

Disasters

O Disasters could be of various types

- Natural disasters:
 - o earthquakes, volcanic eruptions, tsunamis etc.
 - Land slides, rock avalanches, etc.
 - Tornadoes, hurricanes, wild fires etc.

O Biological disasters:

• Plagues, epidemics etc.

• Technological disasters:

• War related, terrorism, chemical and oil

What is ALIVE?

O ALIVE is the ALert Interface Via EGNOS for Disaster Prevention and Mitigation.

- **O** It acts as an interface between the various Disaster Management Centers and the users in distress.
- **O** This is motivated by the obvious principle that disaster prevention, mitigation and preparedness are better than mere disaster response.
- **O** It provides the users in distress with useful information about the possible oncoming of the calamity, ways to avoid it, various rescue measures to be taken etc.

Why SBAS may help?

- SBAS receivers get alert message and also have their position simultaneously. Only users concerned need to act;
- Unique worldwide standard: All SBAS receivers are identical;
- **O** SBAS operated with all guarantees: Safety of Life, Institutional control, 24hour non Stop; confirmation message is broadcast in time.
- Can be implemented in very short term: pragmatic approach;
- Works in places with no infrastructure or where infrastructure is not operational
- **O** Potential Global coverage with all other SBAS;
- O Excellent feedback received from concerned International related organizations. Real interest expressed. A possible good answer to a well know problem.

World Wide Coverage

Implementation Path

- **O** The New Service Message has to be standardised.
- O The receiver units capable of receiving these messages, via SBAS messages, have to be developed.
- **O** The Interface of the SBAS ground segment with the disaster management has to be developed.
- O Look for other SBAS interest aiming at making a global proposal
- O Implement these services in SBASs.

Summary

- Disaster prevention, mitigation and preparedness are better than disaster response.
 - **O** SBAS System can provide message broadcast capability as a means for disaster warnings
- ESA defined the ALIVE concept (Alert Interface Via EGNOS)
 - O Concept applicable also for other critical communication messages (SAR Return link, Information to Avionic users, etc).
- ALIVE concept being promoted at relevant European and United Nations agencies, relevant NGOs and EC levels
 - Very positive welcome to be continued

CONCLUSIONS

O ESTB enabled the demonstration of SBAS applications in Africa , in particular air navigation and train control.

• O Other demontrations of SBAS applications would be useful: ALIVE, maritime..

O ESTB operations are in the process of being stopped

• Those willing to use ESTB for further live trials and plan the introduction of SBAS in Africa should expressed their interest urgently.ESA could possibly help obtaining financial support from relevant EU institutions.