EXTENSION OF EGNOS IN AFRICA << CASE OF MADAGASCAR >>

Presented by: Harvey LEKAMISY

AMPTGNSS Madagascar - GNSS Technology for sustainable development

Contents

- European SBAS
- •Case of Madagascar
- What is the need?
- What are the benefits?
- Implementation strategy
- Implementation implications

Introduction

NAVIGATION:

The key element of flight: possibility to navigate from one airport to another one.

TODAY: techniques are based chiefly on terrestrial radionavigation aides.

CNS/ATM concept: GNSS implementation

CONSTRAINT: Integrity is not guaranteed and is of poor quality

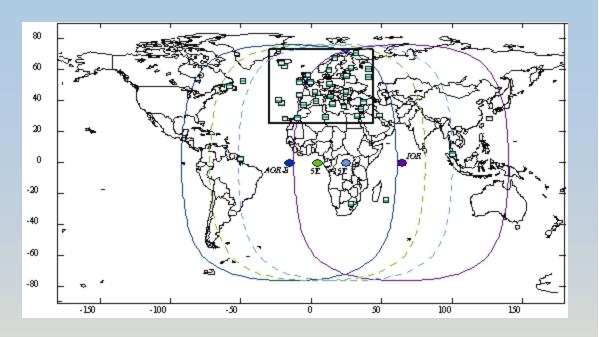
Augmentation systems are necessary for integrity monitoring

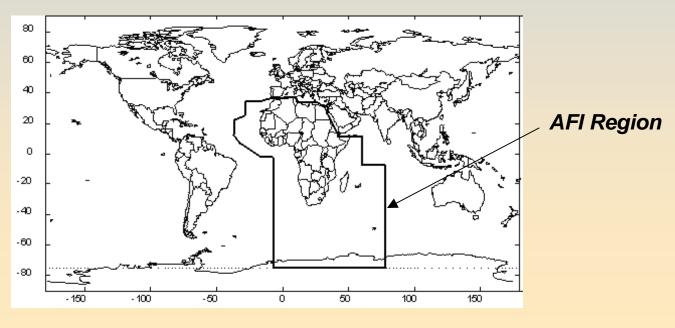
EGNOS is one of the European contribution to GNSS

EGNOS: EUROPEAN SBAS

EGNOS

It aims to augment satellite navigation systems



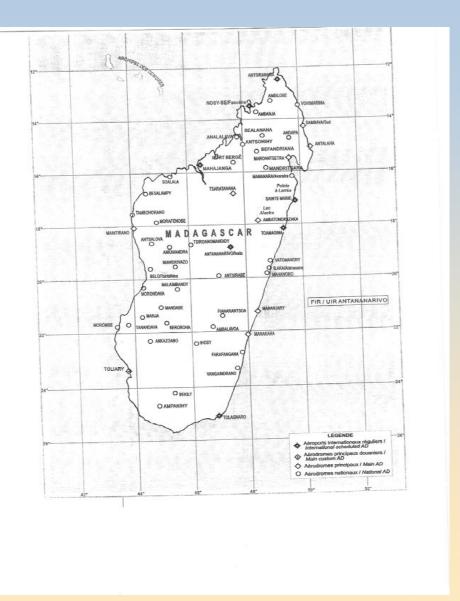

Provides correction

FONCTIONALITIES

- ✓ RANGING: GPS like pseudoranges
- ✓ INTEGRITY: Broadcast of GPS integrity messages
- ✓ WIDE AREA DIFFERENTIAL: Broadcast of GPS differential. corrections valid over full Service Area.

CASE OF MADAGASCAR

AREA: 587.000km²


07 International scheduled Aerodromes

01 Main Custom Aerodromes

08 Main Aerodromes

29 National aerodromes

109 private and reduced used aerodromes

What is the need?

Total NAVAIDS in Madagascar							
approach, landing, en-route							
VOR	06						
DME	04						
NDB	12						
Locator	04						

<u>PA</u>

PA runways 3

ILS CAT-II 3

What would be the benefits?

- EGNOS can replace ILS equipments which are costly, need maintenance and flight inspections
- New APV-1 procedures :
 - new routes between secondary and international airports
 - APV-1 could replace CAT-I when possible
- EGNOS (GNSS) will allow RNAV procedures :
 - distance and fuel savings

States ATS

IATA Airliners ATS

IATA Airliners ATS

GNSS IMPLEMENTATION

RNAV GNSS Approach Procedures:

- 2 Published RNAV GNSS Approach Procedures
- ➤ 1 Designed and tested RNAV GNSS Approach Procedures

WGS-84 Coordinate implementation:

- 07 International scheduled Aerodromes: 100%
- 01 Main Custom Aerodromes: 100%
- 08 Main Aerodromes: 50%
- 29 National aerodromes: 30%

GNSS EDUCATION

BASIC TRAINING

- Two short sessions every year from 2005
- Participant: 90% Engineers
- CONFERENCE/LECTURE (every year)
- Aim: the benefit of GNSS signals to the awareness of decision makers and technical from user institutions and private sector.

ICAO GNSS AFI Strategy

Phase I 2002 - 2005

- •Implementation of an AFI GNSS test bed
- •GNSS as an augmentation to GPS from en-route to NPA operations

Phase II 2006-2012

- Operation of SBAS with APV-1 capabilities
 - Had been shifted

Phase III 2012-...

- Operation of SBAS with CAT-I capabilities
- •Rely upon the availability of a civil satellite constellation (Galileo)
- •CAT-I by SBAS or GBAS

Civil Aviation Requirements for ISA

Typical operation or	Accuracy 95%		Integrity				Continuity	Availability	
facility performance	Lateral	Vertical	Integrity risk	Time To Alert	Horizontal Alert Limit	Vertical Alert Limit		•	
En Route oceanic	2.0 NM	N/A	10 ⁻⁷ /h	5 min	4 NM	N/A	1-10 ⁻⁸ /h to 10 ⁻⁶ 0 ⁻⁴ /h	0.99 to 0.99999 0.	999
En Route Continental	0.4 NM	N/A	10 ⁻⁷ /h	15 s	2 NM	N/A	1-10 ⁻⁸ /h to	0.999 to 0.99999 0.	9999
En Route (terminal)	0.4 NM	N/A	10 ⁻⁷ /h	15 s	1 NM	N/A	1-10 ⁻⁸ /h to 10 ⁻⁶ 0 ⁻⁴ /h	0.999 to 0.99999 0.	9999
Initial Approach, NPA, Departure	220 m	N/A	10 ⁻⁷ /h	10 s	0.3 NM	N/A	1-10 ⁻⁸ /h to 10 ⁻⁵ 0 ⁻⁴ /h	0.99 to 0.99999 0.	9999
APV-I	16 m	20 m	2.10 ⁻⁷ / approach	10 s	40 m	50 m	1-8.10 ⁻⁶ in any 15 s	0.99 to 0.99999 0.	9999
APV-II	16 m	8 m	2.10 ⁻⁷ / approach	6 s	40 m	20 m	1-8.10 ⁻⁶ in any 15 s	0.99 to 0.99999 0.	99999
Category I	16 m	6 m to 4 m	2.10 ⁻⁷ / approach	6 s	40 m	15 m to 10 m	1-8.10 ⁶ in any 15 s	0.99 to 0.99999 0.	99999

Test Bed Trials Objectives (ESA – ASECNA cooperation)

- To verify the navigation performances over selected areas
- To analyze ionospheric impacts
- To evaluate APV1 procedure design
- To sensitize potential services providers and users
- To develop expertise in the view of the implementation of the AFI test bed and an operational system

Implementation Implications (1/3)

"Road Map"

Implementation of a stationary test bed dedicated to AFI region

Implementation of the operational system

Still a lot of work for the implementation

Implementation Implications (2/3)

Test Bed Implementation

- •SBAS receivers on few A/C
- validate SIS and performance criteria
- better assessment of ionospheric effects

finalise SBAS architecture

special ionospheric model

Economical Aspects

- •AFI 3% of worldwide traffic
- •airliners not incline to invest in SBAS receiver

although

IATA Africa more interested than IATA Europe

•investment in **ground** stations

Cost/benefit analyses

Implementation Implications (3/3)

Procedures

- new flight procedure design
- new WP with coordinates in WGS84
- new rules for separation criteria
- •GNSS NPA procedures -publication
 - -design+ test

Staff Training

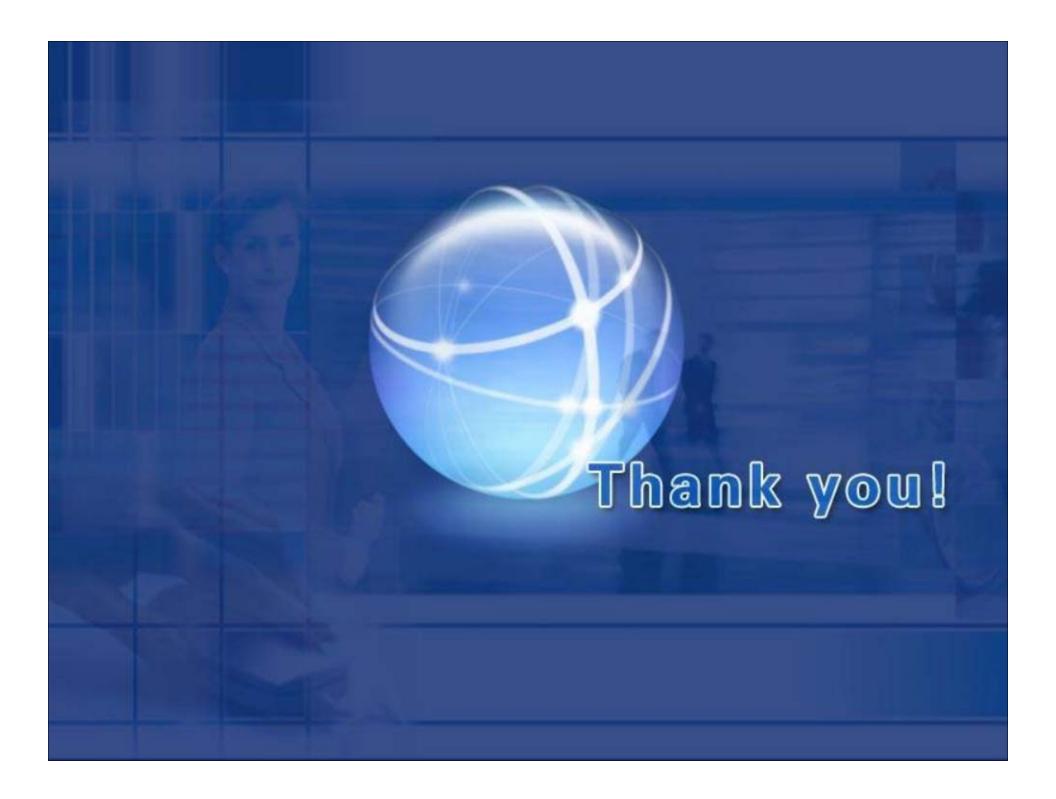
- Pilots
- Civil aviation authorities
- Aeronautical professionals
- Air traffic controllers

training provider

need to progress faster

SIS status information

- Forecast schedule for AOR-E and IOR SIS on web:
 - http://www.esa.int/ESTB
- ESTB FTP server available with rinex data
- ESTB Helpdesk available at: dstb@esa.int
 - For any questions on EGNOS and ESTB
 - For Login and password for ESTB FTP server
 - For Daily e-mail from ESTB MCC


Conclusion

EGNOS Implementation → still some more work

Future...

combined use Galileo+EGNOS

Other benefits from EGNOS for Africa...

