

Realising CS42 with WGS84

D.Fazilova, E.Mirmakhmudov, A.Fazilov

Tashkent architectural and construction institute, Uzbekistan Astronomical Institute of the Uzbek Academy of Sciences

> erkin_mir@yahoo.com erkin_mir@mail.ru mob. +998971111958

United Nations/Moldova/United States of America

Workshop on the Applications of Global Navigation Satellite Systems

Chisinau, Moldova

17 – 21 May 2010

СИ

United Nation/Moldova/United States of America Workshop on the Application of Global Navigation Satellite Systems, Chisinau, Moldova,17-21 May 2010

United Nation/Moldova/United States of America Workshop on the Application of Global Navigation Satellite Systems, Chisinau, Moldova 17-21 May 2010

ТАСИ

GEODETIC PROBLEMS OF UZBEKISTAN

•State Geodetic Network of the former Soviet Union was developed by prof. Krasovsky more than 60 years ago. The Republic of Uzbekistan was part of the former Soviet Union.

• Geophysical services of Uzbekistan use the coordinate system of 1942 (SC-42, a starting point "PULKOVO").

•Distortions in the current datum up to 10 m have been recognized

•This network is static, its points remain stationary.

•Insufficient density of network ITRF for the decision of geodynamic problems

CИ

CATS-Network and Major Active Faults Junggar B. Kasakhstan Platform 44°-Issyk Kul Kizil Koum Tien Shan 40° TarimB. Pamirs Tadjik Depr. Hindu Kush. Kun Lun 36° **Tibet Plateau** 77° 65° 69° 73° 81° transcurrent convergence thrust ▲ GPS-sites rotation fault fault direction

United Nation/Moldova/United States of America Workshop on the Application of Global Navigation Satellite Systems, Chisinau, Moldova,17-21 May 2010

GPS network in Uzbekistan

N.

United Nation/Moldova/United States of America Workshop on the Application of Global⁵ Navigation Satellite Systems, Chisinau, Moldova,17-21 May 2010

Central-Asian GPS network

- **Russia**
- Kazakhstan
- Kyrgistan
- Uzbekistan
- China

ТАСИ

Tashkent architectural and construction Institute Astronomical Institute of the Uzbek Academy of Sciences

The Molodensky method

$$B_{84} = B_{42} + \Delta B$$

$$L_{84} = L_{42} + \Delta L$$

$$H_{84} = H_{42} + \Delta H$$

$$\Delta B = \frac{\rho''}{M + H} [-T_X \sin B \cos L - T_Y \sin B \sin L + T_Z \cos B + \Delta a_E (Ne^2 \sin B \cos B) / a_E + \frac{N\Delta e_E^2}{2} \left(\frac{N^2}{a_E^2} + 1\right) \sin B \cos B] + (1 + e_E^2 \cos 2B) (\omega_X \sin L - \omega_Y \cos L) - \rho'' e_E^2 \mu \sin B \cos B;$$

$$\Delta L = \frac{\rho''}{(N+H)\cos B} (-T_X \sin L + T_Y \cos L) - tgB (1 - e_E^2) (\omega_X \cos L + \omega_Y \sin L) + \omega_Z;$$

$$\Delta H = T_X \cos B \cos L + T_Y \cos B \sin L + T_Z \sin B - \frac{a_E \Delta \alpha_E}{N} + \frac{\Delta^2_E N \sin^2 B}{2} + e_E^2 N \sin B \cos B \left(\frac{\omega_X}{\rho''} \sin L - \frac{\omega_Y}{\rho''} \cos L\right) + \mu (N + H - e_E^2 \sin^2 B).$$

The Helmert method

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{CK-42} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{WGS-84} + \begin{bmatrix} T_X \\ T_Y \\ T_Z \end{bmatrix} + \begin{bmatrix} m & \omega_Z & -\omega_Y \\ -\omega_Z & m & \omega_X \\ \omega_Y & -\omega_X & m \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{WGS-84}$$

Coordinates difference between WGS-84 and SC-42 for CATS points in Uzbekistan

Coordinates difference between WGS-84 and CK-42

dx = 28, dy = -130, dz = -95World Geodetic System 1984. NIMA, 2000

dx = 24, dy = -141, dz = -81 GOST 51794-2001

Coordinates difference between WGS-84 and CK-42

DATUM TRANS.	ΔΧ	ΔΥ	ΔZ	Method	Comments
CS42-WGS84	+15	-130	-84	Molodensky	NIMA
CS42-WGS84	+43	-108	-119	Helmert	NIMA (Caspian)
CS42-WGS84	+28	-130	-95	Molodensky	NIMA
CS42-WGS84	+25	-141	-80	Helmert	GOST(RU)
CS42-WGS84	+22	-123	-83	Molodensky	Bazlov(RU)
CS42-WGS84	+23	-125	-87	Molodensky	Fazilova(UZ)

Velocity of Kitab station in 1994-2000

ТАСИ

Continental moving

DORIS network

GPS station in Kitab

$φ=39^{\circ} 07' 59'', λ=66^{\circ} 52' 57.0'', H=657 \text{ m.} (CS-42)$ $φ=39^{\circ} 08' 05'', λ=66^{\circ} 53' 07.6'', H=622 \text{ m.} (WGS-84)$

1992-1996

The international program CATs(GFZ,Germany)

- RMS: 1-3mm. for x, y
- RMS: 5mm. for H.
- RMS: 1-2cm. for Global network

IGS network

GMT Dec 26 16:10:01 2001

СИ

THANK YOU for attention