Manipulation of Gravity using the Random Positioning Machine: RPM

(Space starts on Ground!)

<u>Jack J.W.A. van Loon</u>, Dutch Experiment Support Center DESC, ACTA – Univ. of Amsterdam & VU-Universiteit, Amsterdam, (NL) & `European Space Agency, ESA, TEC-MMG, ESTEC, Noordwijk (NL): <u>i.vanloon@vumc.nl</u>

Guus Borst

Dutch Space, Leiden, The Netherlands: A.Borst@dutchspace.nl

United Nations / Malaysia Expert Meeting on Human Space Technology 14 – 18 November 2011, Putrajaya, Malaysia

Manipulating Gravity

Magnetic Levitation

Inorganic

Plant

Animal

magnetic field ____ magnetic permeability of vacuum

Levitation:
$$F_z = F_{magnetic} + F_{gravity} = 0 \Rightarrow B_z B_z = \frac{\rho}{\chi} \mu_0 g$$

magnetic field gradient

Berry & Geim, Eur. J. Phys. 1997

magnetic susceptibility

UN / Malaysia Expert Meeting

Jack J.W.A. van Loon

Slow & Fast Rotating Clinostats

Principle (Sachs, 1879)

The 'classic' clinostat is a machine for microweight simulation through a constant change, in 2D, of the direction of the gravity vector @ ~ 1-5 rpm

• Plants (cells)

'Punjab' clinostat

Principle (Briebleb, 1965)

The 'classic' clinostat is a machine for microweight simulation through a constant change, in 2D, of the direction of the gravity vector @ ~ 50-80 rpm

Single cells / tissues

Clinostat – microscope, DLR, Germany

Also Great for Education

UN / Malaysia Expert Meeting

Jack J.W.A. van Loon

History of the RPM (1)

- Probably one of the first users of a cardanic frames for gravity research (Magnus, University of Utrecht, 1924)
- In Italy a 3D clinostat experiments were_ performed (Scano 1963)
- Japanese researchers developed a 3D clinostat (Murakami and Yamada 1988) -

from: Van Loon, J, Adv. Space Res. 2007

One of first sophisticated 3D rotating systems

Garden cress (Lepidium sativum) statocytes

built in 1986

ISAS, Japan (courtesy: dr. Yamashita

1g control

3D-clinostat

- First results of this '3D clinostat': Murakami *et al.* Jap. Soc. Biol. Sci. Space, 1988.
- System later better described by Hoson et al. 1992.

UN / Malaysia Expert Meeting

Jack J.W.A. van Loon _

Random Positioning Machine (RPM) in NL

Principle

The RPM is a machine for microweight simulation through a random change, in 3D, of the direction of the gravity vector.

Use for

- Cells / tissues
- Plants
- Small animals (e.g. drosophila, fish, rodents)
- Technology (H/W tests)

RPM at DES

Main Features

- Temp. 4-40°C
- Operational modes: random (0.1-6 rad/sec), centrifuge (0.1-60 rpm) and clinostat (0.1-60 rpm) and freely programmable mode
- Experiment interfaces: 12/15 volt power line, RS-232 (422) data bus (optical), Fiber optic video connection and camera
- Maximum experiment mass to be accommodated ~10 kg.
- Functional experiment accommodation volume 450 x 450 x 300 mm
- Possibility for microscopy, life support

g-vector components during 3-D rotation

Residual inertial shear gravity

15° = 0.2617993 reds 60° = 1.047197 rads 120° = 2.094394 rads 180° = 1π rads (3.141592)

DESC

UN / Malaysia Expert Meeting

Jack J.W.A. van Loon

Fluid shear force in 'standard box'

PIV measurements (Particle Image Velocimetry)

Leguy et al. Grav & Space Biol. 25(1). 2011

RPM examples-1: Arabidopsis Growth

RPM examples-1: Drosophila Development UA

Gene expression comparison

Adults @ 2g

Gene expression dynamics inspector 15x13 clustering analysis

Herranz et al. Molecular Ecology 2010

Use of 3D rotating devices remarks:

In general:

- Experiments using 'Eastern' systems use lower accelerations (1-5 rpm) as compared to 'Western' systems (>50 rpm)
- Comparison of different paradigms needed
- Fluid motion / dynamics in 3D systems needs further clarification
- Same end-result (in µg and e.g. RPM) do not necessarily mean the same response-pathway

UN / Malaysia Expert Meeting

Jack J.W.A. van Loon

Use of a Random Positioning Machine:

In Conclusion:

- RPM can very well be used to familiarize users with gravity related research (as well as centrifuges !!)
- Not all experiments will be suited for RPM
- Already flown experiments can be verified for RPM and further developed on ground for later re-flight

