Monitoring major landslides using Global Positioning System- case study Hammana region- Lebanon

Chadi Abdallah * & Francisco Gomez **

Dubai, 16 – 20 January 2011

* Lebanese National Council for Scientific Research -Remote Sensing Center
** Department of Geology, University of Missouri –Columbia- USA
Strategy

Hazard and Risk mapping:

1- Land slides (Mass movement)
2- EQ
3- Floods
4- Soil Erosion
5- Sea level rise
6- Forest Fires
About 100 people are located in these buildings
1. Detection of LS/MM using different types of platforms and processing techniques

2. Establishing correlations between MM occurrence and the influencing factors (preconditioning & triggering) using GIS and statistical methods

3. Mapping the susceptibility & hazard of MM at a scale of 1:50,000 (qualitative)

4. Predictive mapping of block fall volumes (quantitative)

5. Monitoring Mass Movement using GPS, and Radar interferometry
Detecting MM using Remote Sensing techniques

- Satellite imageries:
 * 2 panchromatic stereopairs SPOT 4 images (10 m resolution) (2.3 & 30.3 incident angles)
 * Landsat TM (30 m)
 * IRS-1C (6 m)
 * IKONOS (1 & 4 m)

- Data combination and treatments:

<table>
<thead>
<tr>
<th>Method</th>
<th>Imageries</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC</td>
<td>Landsat TM (3,5,7 & 4,5,7)</td>
</tr>
<tr>
<td>Panchromatic</td>
<td>SPOT4</td>
</tr>
<tr>
<td>Anaglyph</td>
<td>SPOT4</td>
</tr>
<tr>
<td>Pan Sharpen</td>
<td>Landsat TM-IRS</td>
</tr>
<tr>
<td></td>
<td>IKONOS</td>
</tr>
<tr>
<td>PCA</td>
<td>Landsat TM</td>
</tr>
<tr>
<td></td>
<td>Pan Landsat TM-IRS</td>
</tr>
</tbody>
</table>
d) Pan-Sharp IRS + LANDSAT

e) PCA (IRS + LANDSAT)

f) SPOT 4
Correlating terrain parameters with MM occurrence

Figure 6: Organigram showing different steps of the study
Volumetric mapping of MM

Decision-tree model explored on all parameters, without applying a pruning cross-validation test (model 1a)
On going work
- Mapping 27 sheets
 Scale 1:50 000
- Mapping 121 sheet
 Scale 1:20 000

Risk mapping on finer scale
Albian Erosion

Previous glacial age conditions

1. Upstanding cliff slopes, and evolved slopes at their bases with various configurations

2. Re-mobilization of alluvial deposits

Albian debris deposition
Monitoring LS/ MM using GPS

Two sets of Trimble 5700 receivers with Zephyr Geodetic antennae

- 13 monuments, 4 Profiles, 3 point/profile
- 15 cm steel pin cemented in the bedrock
- The reference station was mounted on top of the cliff and above the slide in a relatively stable area.
- 2 hours reading.
Monitoring LS/ MM using GPS
Monitoring LS/ MM using GPS

Monuments distribution in Hammana
Monitoring LS/ MM using GPS
What does radar tell us?

- Radar signals consist of:
 - Amplitude
 - Phase
 - Wavelength
 - Polarization

- Different objects will scatter energy and change these properties in the returned signal
Interferometry (InSAR)

- Measuring the **difference** of phase between two radar images
- Phase difference reflects change in Line-of-Site distance between satellite and ground
- Ideally, difference should be ZERO
Image A - 12 August 1999

Image B - 16 September 1999

SAR image
To isolate the contribution of interest, the other phase contributions must be reduced or removed. How?

For deformation, we must mitigate topography and atmosphere (and noise)
Monitoring mass movement using Radar Interferometry

Recent Satellite SAR Missions

<table>
<thead>
<tr>
<th>Mission</th>
<th>Launched</th>
<th>Repeat Cycle</th>
<th>Satellite Altitude</th>
<th>Radar Band</th>
<th>Wavelength (cm)</th>
<th>Center Frequency (GHz)</th>
<th>Bandwidth (MHz)</th>
<th>Look Angle (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERS-1/2</td>
<td>1991</td>
<td>35</td>
<td>790</td>
<td>C</td>
<td>5.6</td>
<td>5.3</td>
<td>15.55</td>
<td>23</td>
</tr>
<tr>
<td>ERS-2</td>
<td>1995</td>
<td>35</td>
<td>790</td>
<td>C</td>
<td>5.6</td>
<td>5.3</td>
<td>15.55</td>
<td>23</td>
</tr>
<tr>
<td>JERS-1</td>
<td>1992</td>
<td>44</td>
<td>568</td>
<td>L</td>
<td>11.8</td>
<td>1.275</td>
<td>15</td>
<td>39</td>
</tr>
<tr>
<td>Radarsat-1</td>
<td>1995</td>
<td>24</td>
<td>792</td>
<td>C</td>
<td>5.6</td>
<td>5.3</td>
<td>11</td>
<td>20-49</td>
</tr>
<tr>
<td>ENVISAT</td>
<td>2002</td>
<td>35</td>
<td>800</td>
<td>C</td>
<td>5.6</td>
<td>5.3</td>
<td>14</td>
<td>20-50</td>
</tr>
<tr>
<td>ALOS</td>
<td>2005</td>
<td>45</td>
<td>700</td>
<td>L</td>
<td>11.8</td>
<td>1.27</td>
<td>28</td>
<td>8-60</td>
</tr>
<tr>
<td>TerraSAR-X</td>
<td>2007</td>
<td>11</td>
<td>514</td>
<td>X</td>
<td>3.1</td>
<td>9.6</td>
<td>150</td>
<td>35</td>
</tr>
<tr>
<td>Cosmo-Skymed</td>
<td>2007</td>
<td>4</td>
<td>619</td>
<td>X</td>
<td>3.1</td>
<td>9.6</td>
<td>150</td>
<td>45</td>
</tr>
</tbody>
</table>

- **ERS-1/2**: 26 imageries, 75 interferograms
- **ENVISAT**: 29 imageries, 128 interferograms
- **ALOS**: 8 imageries, 23 interferograms
Monitoring mass movement using Radar Interferometry
Monitoring mass movement using Radar Interferometry
Monitoring mass movement using Radar Interferometry

09624-12927: 14/11/07 – 01/07/08

09624-10295: 14/11/07 – 30/12/07
Monitoring mass movement using Radar Interferometry

Abdallah et al., 2009, AGU fall meeting

09624-12927: 14/11/07 – 01/07/08

10295-11637: 30/12/07 – 31/03/08
Monitoring mass movement using Radar Interferometry

08282 – 09624: 29/08/07 – 14/11/07

09624- 10295: 14/11/07 – 30/12/07

08953 – 09624: 29/09/07 – 19/11/08
Future Plans

- Carry on GPS campaigns for the sliding areas
- Establish 2 new permanent GPS stations
- EQ studies
Thank YOU