Effects of GNSS jammers and potential mitigation approaches

Dr. Heidi Kuusniemi Research Manager Finnish Geodetic Institute Department of Navigation and Positioning Finland

United Nations/Latvia Workshop on the Applications of GNSS 14-18 May, 2012, Riga, Latvia

Content

- Introduction
- GPS and future GNSS
- Error and interference sources
- Interference classification
- Effects of jamming: test results
- Jamming and interference detection and mitigation approaches
- Conclusions

Introduction (1)

- Deliberate and dangerous jamming:
 - In late 2009 engineers noticed that satellite-positioning receivers for navigation aiding in airplane landings at Newark airport were suffering from brief daily breaks
 - It took two months for investigators from the Federal Aviation Authority to track down the problem
 - A driver who passed by on the nearby highway each day had a cheap GPS jammer (< 30 USD) in his truck
 - A jammer prevents a tracking device in the vehicle from determining and reporting location and speed, but it also disrupts GPS signals for others nearby
 - The driver objected his employers tracking his every move
 - Jammer ≈ "personal privacy device" → serious GNSS integrity threat

"GPS jamming: No jam tomorrow", The Economist , 2011

Heidi.Kuusniemi@fgi.fi

Introduction (2)

- Using jammers is illegal in most countries
 - Still, jammers are gaining popularity to avoid e.g. road tolling, insurance billing, as well as tracking and location based monitoring
- Systems all over the world have been created to detect jamming/interference
 - e.g. GAARDIAN in Britain, JLOC in the US
- Interference in Newark airport is still observed as Jamming in the Name of often as several times per day
 - the mitigations applied thus far have however reduced the frequency of incidents strong enough to affect navigation aiding in landings to several per week on average
- It has also been suggested that legislation is changed so that all smartphones would be required to search for jammers nearby and warn others in the vicinity
 - Crowd-sourcing for interference detection?
- Also terrestrial beacons, back-ups to GNSS, are again gaining importance

Satellite navigation – the GPS system

- Satellite navigation is based on radio signals transmitted by Earth-orbiting satellites and distance measurements between satellites and a user receiver
- A GNSS receiver 1) measures the signal travel time from the satellite to the Earth, and/or 2) computes the number of full carrier cycles between a satellite and a receiver
 - \rightarrow Range/distance measurements
- A receiver receives simultaneously information from multiple satellites through multiple channels
- When satellite locations are known, the user receiver location can be estimated based on the range measurements
 SATELLITES

Future GNSS (1)

- In parallel to GPS, other satellite navigation systems have emerged or are under construction
 - The Russian GLONASS completely functional, and undergoing further modernization
 - European Galileo is being developed
 - China's Compass/Beidou-2 is being developed
 - Also GPS is being modernized
- The systems are designed to be more and more resistant to interference
 - The modernized and developed systems will include new carrier signal frequencies and new types of modulation codes
- GNSS, Global Navigation Satellite Systems:

GPS 32 SV operational

Galileo 2 test-SV and 2 operational IOV satellites

Glonass 24 SV operational

6

Future GNSS (2)

- Adding new interoperable GNSS signals with improved modulations, signal carriers with subcarriers, longer codes and higher transmission power will improve the availability as well as the accuracy of satellite positioning
 - Better resistance to cross-correlation
 - Better multipath mitigation properties
 - Better opportunities for weak signal acquisition with longer integration of data-less pilot signals
 - Better resistance to interference
- However, multiple GNSSs induce more complicated signal processing
- In the future, all the available navigation signal frequencies (L1/E1, L2, L5/E5, E6) are more difficult to be jammed simultaneously

GNSS error sources

- Satellite measurements are noisy and erroneous since the signals attenuate on their way from the satellite to the receiver and bounce off e.g. buildings
- Most important sources of error:
 - Satellite induced errors
 - Orbital errors
 - Clock errors
 - Signal path related errors
 - Ionosphere
 - Troposphere
 - Multipath propagation
 - Receiver induced errors
 - Various noise
 - Also errors caused by the receiver operator/data processor

Interference sources (1)

- The signals from GNSS satellites are very weak by the time that user equipment receives and processes them
 - The minimum received power is

GPS L1 C/A: -128.5 dBm

Galileo E1: -127 dBm

- GNSS signals are thus especially vulnerable to radio frequency interference
- Unintentional interference
 - Free electrons in the ionosphere act as a retardant and accelerative force on the GPS code and carrier phase measurements respectively
 - Massive solar flares can cause GPS devices to lose signals
 - Terrestrial in-, near-, and out-of-band interference, as well as spurious emissions and/or harmonic interference from other systems, may disrupt GPS signal reception
 - TV and telecommunications signals
 - LightSquared was threatening in the US due to the interfere with GPS L1
 - a 4G LTE wireless broadband communications network integrated with satellite coverage

Interference sources (2)

- Intentional interference
 - Signal transmissions from such devices are regarded as intentional interference that intentionally send radiofrequency signals with <u>high enough power</u> and <u>specific</u> <u>signal properties</u> to prevent or hinder/complicate signal tracking in a specific geographical area

- any radio frequency interference signals that deteriorate GNSS reception and accuracy
- Spoofing
 - attempts to deceive a GPS receiver by broadcasting a slightly more powerful signal than that received from the GPS satellites, structured to resemble a set of normal GPS signals
 - causes the receiver to determine its position to be somewhere other than where it actually is

Interference classification (1)

- Interference signals can be continuous wave, wide-band or narrow-band radio frequency signals
- The higher power jamming signal, the more damage will be caused and the further it will reach
- Typically, jammers transmit interference signals in the L1/E1 band where the civilian consumer-grade navigation receivers operate (GPS, GLONASS and future Galileo)
- Typical jamming signal classification:
 - Class I: Continuous wave signal
 - Class II: Chirp signal with one saw-tooth function
 - · Class III: Chirp signal with multi saw-tooth functions
 - Class IV: Chirp signal with frequency bursts

Interference classification (2)

- Usually in-car jammers belong to the category of narrowband interference
 - Some of them have a continuous wave signal but the majority has a <u>chirp signal</u> with different complexity
 - A typical chirp-jammer signal sweep time is 9 microseconds and a signal bandwidth of 20 MHz

Effects of jamming

- Jamming deteriorates the positioning solution accuracy or alternatively totally loses the satellite signals and thus impairs the positioning availability
 - Jamming affects the positioning receiver's carrier-to-noise ratio C/N₀ (dBHz)
- The effect of jamming can resemble receiving attenuated and multipath-deteriorated signals of dense urban areas
 - the signal to noise ratio decreases and the GNSS signal to be received gets weaker and weaker
- GNSS receivers react differently to jamming
 - The basic principle of GNSS receivers are the same but their internal processes and filters may mitigate the effect of a jamming signal being present differently

Analyzed jammers (1)

Covert GPS L1 jammer (14 \$): with special permission from the Finnish Communications Regulatory Authority, restricted to -30 dBm (nominal 13 dBm)

Heidi.Kuusniemi@fgi.fi

Test results (1)

- The effects of the jammers on consumer grade GPS receivers were analyzed in a confined navigation laboratory at the Finnish Geodetic Institute
- Positioning solutions were analyzed with and without the jammers on 24 hours consecutively in the singlefrequency case, and in shorter time steps with a dualfrequency receiver
- GNSS receivers:

NISH GEODETI(

- uBlox 5H and 5T
- Fastrax IT500 and IT600
- GPS inside Nokia N8
- NovAtel OEM4 (L1/L2)

Test results (2)

- The jamming-to-signal (J/S) ratio in dB, is the ratio of the power of a jamming signal to that of a desired GNSS signal at a given point
- The maximum J/S ratios of around 15 and 25 dB were utilized in two test cases in addition to a no jamming test scenario
- Single-frequency:
 - L1 jamming effects were analyzed on 6 receivers with the Covert GPS L1 jammer:
 - uBlox 5H, uBlox 5T, Fastrax IT500, Fastrax IT600, GPS receiver inside the Nokia N8 smartphone, and the NovAtel OEM4
 - The datasets were obtained for 24-hour test duration in three different cases: i) with no jamming, ii) with max J/S ≈ 15 dB, and iii) with max J/S ≈ 25 dB
- Dual-frequency:
 - L1 and L2 jamming effects were analyzed on the NovAtel OEM4 DL-4plus (code-only processing) receiver with both the GPS L2-L5 and the Covert GPS L1 jammers simultaneously switched on
 - max J/S ≈ 15 dB and max J/S ≈ 25 dB in 1-hour time-steps along with a no jamming test case where both the jammers were switched off

Test results – single-frequency (1)

Heidi.Kuusniemi@fgi.fi

Test results – single-frequency (2)

- Single-frequency L1
- 24-h static tests to assess the effects of the jamming signal on consumer grade receivers
- Jamming-to-signal ratio
 15 dB and 25 dB
- The maximum horizontal error was increased and positioning solution availability decreased when the jamming signal power was increased

		Mean (m)	Std (m)	Max (m)	%
uBlox 5H	no jam	1.0	0.6	3.8	100
	max J/S≈15 dB	1.4	0.7	4.6	100
	max J/S≈25 dB	9.2	8.7	129.3	16
	no jam	1.0	0.6	4.0	100
uBlox 5T	max J/S≈15 dB	1.5	0.8	6.5	100
	max J/S≈25 dB	4.2	5.5	94	26
	no jam	2.2	1.0	5.3	100
Fastrax IT500	max J/S≈15 dB	2.3	1.0	65	100
	max J/S≈25 dB	3.7	5.2	85.4	16
	no jam	1.3	0.6	3.2	100
Fastrax IT600	max J/S≈15 dB	1.3	0.7	3.2	100
	max J/S≈25 dB	5.9	3.6	16.4	100
	no jam	2.6	2.4	32.4	100
Nokia N8 GPS	max J/S≈15 dB	3.1	3.8	34.0	100
	max J/S≈25 dB	3.9	2.2	22.4	16
	no jam	1.0	0.7	4.8	100
NovAtel	max J/S≈15 dB	2.4	3.9	90.5	30
	max J/S≈25 dB	5.4	7.3	92.1	8

Test results – single-frequency (3)

Test results – single-frequency (4)

Test results – single-frequency (5)

Test results – dual-frequency (1)

Heidi.Kuusniemi@fgi.fi

Test results – dual-frequency (2)

- Both of the jammers were switched on, with a maximum J/S of around 15 dB and 25 dB in two consecutive tests
- The maximum horizontal error was increased and positioning solution availability decreased when the jamming signal powers were increased
- 1-hour datasets and code measurements only were, however, used in position computation

		Mean (m)	Std (m)	Max (m)	%
NovAtel L1 & L2	no jam	0.8	0.4	2.8	100
	max J/S≈15 dB	3.4	6.0	78.9	100
	max J/S≈25 dB	3.5	2.6	26.6	11

Test results – dual-frequency (3)

Jamming detection (1)

- Modernized GNSS signals will take into account interference resistance
 - Cross-correlation less probable
 - Weaker and weaker signals can be acquired
- Intentional interference becomes more difficult when multi-GNSS frequencies and modulations are in use
- GNSS receivers can attempt to protect themselves towards interference in many ways with hardware and software
 - both antenna-based and receiver-based solutions
- Antenna technology plays an important role in mitigating the effects of interference signals

Jamming detection (2)

- Typical mitigation approaches for civilian jamming mitigation include:
 - Antenna Solutions
 - Controlled Radiation Pattern Antenna
 - Adaptive Beamforming
 - Receiver Solutions
 - Adaptive Notch Filtering
 - Switching Frequencies (multi-GNSS / multi-frequency)
 - Integrating GNSS with INS (inertial navigation system)
 - Applying an interference suppression unit
- The jamming signals need to be detected first in order to mathematically model them and apply a mitigation approach
 - Adaptive filtering with respect to
 - Time (chirp signals)
 - Signal spectrum amplitude (narrow-band interference)

Conclusions

- Reliable navigation functionality is imperative in more and more applications nowadays on land, sea, and air
- In-car, civilian jammers are a serious threat to the performance of consumer grade GPS receivers
 - steps must be taken against the use of jammers
- Accuracy and signal availability is significantly decreased when jamming is present
 - how much depends on what kind of a jamming signal is present and with what power
- Research will continue on
 - jamming signal detection approaches utilizing a software GNSS receiver
 - weak signal tracking when interference present
 - effects of multi-frequency jamming
 - reliability detection algorithms

UPINLBS 2012

www.fgi.fi/upinlbs

2nd International Conference and Exhibition on Ubiquitous Positioning, Indoor Navigation and Location-Based Service

Helsinki, Finland, 3-4th October 2012

Two first Galileo IOV-satellites

Thank you!

Heidi.Kuusniemi@fgi.fi

30