

Understanding of GNSS anomalies : Anatolian Bump Signatures

United Nations/Latvia Workshop on the Applications of Global Navigation Satellite Systems 14 – 18 May 2012 Riga, Latvia

Ayman Mahrous

Space Weather Monitoring Center, Faculty of Science, Helwan University, Cairo, Egypt. e-mail: amahrous@helwan.edu.eg, Fax.: 202-555-2468,Tel.: 202-556-7506

Trever Garner

Applied Research Laboratories, University of Texas at Austin, USA

Small City ! 121,300 Students enrolled (2012) in 18 Faculties

1 miles

Outlines

- Why we Study Space Weather ?
- Space Weather Monitoring Center (SWMC) at HU
- Research Groups
- CIDR System
- Results
- Conclusions

Why we Study Space Weather?

Spacecraft Damage/Loss

Satellite Tracking Problems After March 13-14, 1989 Storm

Position Error

Research Groups in our Center

www.helwan.edu.eg/english/space

http://www.helwan.edu.eg/english/space

o space weather-eg.com: - Windows Internet Explorer		
::Welcome to space weather-eg.com::	* [***]. []	
Space We	eather Center	
Home About Us members Research	van University Wellcome to The Space Weather Center in Egypt	
Projects Data <u>Articles</u> Newsletter <u>Seminars</u> <u>News</u>	All right Respect C SpaceWeather_es	
	ALL right Resrved C SpaceWeather-eg	

Joint Projects

Texas University (USA) CIDR Ionospheric Receiver	Kyusho University (Japan) MAGDAS Magnetometer
Stanford University (USA) AWSOME Ionospheric Receiver	SCINDA Ionospheric Receiver
European Union TEMPUS	US-Egyptian Joint Board
Joining the African Network with European Networks (proposed)	Cyprus-Egyptian Joint Board

ETH

Eldgenkeine der Nicheltsche Heckerholle Zürin Swiss Federal Institute of Technology Durich

GPS System at Helwan

- 1: GPS receiver
- 2: GPS dual frequency antenna
- 3: Antenna cable (30 meter maximum)
- 4: Serial cable
- 5: Power cable
- 6: Personal computer running Linux

TEC Profile

UT HOURS

Simulation Group

Energetic Event

MAGDAS Project 2009

MAGDAS at FYM

MAGDAS-II installation at ASW & FYM

Cosmic Ray Group

The interaction of cosmic ray particles in the upper atmosphere (primarily 9~15 Km above Earth's surface) usually produces pions (Duldig, 2000), a bound state of an up and anti-down quark.

With lifetime of $(2.6 \times 10^{-8} \text{ s})$, the pion travels only hundreds of meters at velocities between (0.966 C and 0.977 C) before decaying into a muon and mu-neutrino .

The muons produced in that reaction descend to Earth's surface with ample supply of muons at sea level which facilitates the study of these particles (Caso et al., 2000).

Testing of RPC at SWMC Lab.

4 scintillators
4 scintillation detector
boxes
4 Photo Multiplier Tubes
PMT
4 electronic boxes to be attached to PMT
Multichannel analyzer
Digital oscilloscope
High voltage power
supply

Data Analysis by Cosmic Ray Group

http://www.eumedgrid.org/application/hero.html

EUMED GRID at SWMC

Egypt is Located in Equatorial Anomaly Region (Crest and Trough)

Figure 1.5. Contour is the altitude profile of plasma density at 14LT, black lines are magnetic field lines and arrows stand for the directions of ion drifts [courtesy of Liu and Lin, 2006].

Coherent Ionospheric Doppler Receivers (CIDR) Project 2008

Coherent Ionospheric Doppler Receivers (CIDRs)

Three CIDRs will be deployed to Egypt as part of IHY

• US coordinator (Dr. Trevor Garner), Texas University
• Egyptian coordinator (Dr. Ayman Mahrous), Helwan University.

The CIDR will be operated jointly by :
1- Helwan University
2- South Valley University
3- Alexandria University

nospheric Tomography Network of Egypt: A New Receiver Network in Support of the International Heliophysical YearT. Garner, Gaussiran, J. York, D. Munton, C. Slack, A. Mahrous, Earth, Moon and Planet, 2009, Vol. 104, pp. 227-235.

Coherent Ionospheric Doppler Receivers (CIDRs)

- Designed to track 150/400MIHz LEO beacons (Transit/NIMS, GFO)
- Provides relative TEC and phase scintillation measurements at 50 Hz
- Useful for examining spatial structure with a relatively sparse receiver network and conducting ionospheric tomography

RADCAL (1993 to Present)

- Radio Altimetry and Ephemeris Satellites
 - 150/400 MHz Radio Beacon
 - Ionospheric TEC Correction Data

RADCAL/GFO Beacon Satellites

- 3 RADCAL/GFO Satellites
- 20 RADCAL Ground Stations
 - Archived Data 1993 to Present
 - 5 Second Samples
 - Maintained by AF Western Test Range Vandenberg

GFO (1998 to Present)

RADCAL on DMSP/F15 (Aug 2006 to Present)

Advantages Over GPS

• More accurate, no need for plasmaspheric corrections by using LEO satellites (300~1100 km), while GPS orbital height (20,000 Km)

• Can measure the spatial structure of the ionosphere.

• A powerful tool for topographic image of the ionosphere

Occurrence of the Anatolian Bump

- Examined all data from the Helwan CIDR during 2008.
 - Isolated data over Anatolia
 - 160 good CIDR passes
 - 36.88 % of the passes show no perturbations
- CIDR data presented at the 300 km pierce point

Anatolian Bump Occur Where Atmospheric Gravity Waves are Likely

Initial Observation

Classification of Anatolian Bump Structures

• Bump

A bump is defines as a single spatial DTEC/Dt peak with a peak - to - trough amplitude of at least 0.01TECU/s (1TEC unit (TECu)=1016 electrons/m2) that is at least1° wide in F region latitude.

• **Ripple**

A ripple is a bump with smaller structures on either side of the central bump.

• Wave

waves have amplitudes \geq 0.01 TECU/s with several roughly equal peaks.

Bump Structure

- Occur on 29.38 % of passes over Anatolia
- Possible response to the gravity waves generated by orographic lift

Distribution of Bump Structure

Ripple Structure

- Occur on 16.88 % of passes over Anatolia
- Orographic lift creates ripples that dissipate from the source

Wave Structure

- Occur in 5% of Anatolian passes.
- Gravitational Waves Signature

Conclusions

- Mostly CIDR passes (~60%) during the fall of 2008 showed the Anatolian Plateau
- Because of the correlation with steep topographic gradients, gravity waves and orographic lift are likely sources of the observed structure

Table 1. The Occurrence Frequency of $\Delta \text{TEC}/\Delta t$ Structures Over the Anatolian Plateau During the Fall of 2008

Structure	Count	Occurrence Frequency
None	65	40.9%
Bump	55	34.6%
Ripple	29	18.2%
Wave	10	6.3%

