Utilizing information from space-borne sensors for climate risk management

Gabrielle Iglesias

Asian Disaster Preparedness Center

United Nations/Indonesia
International Conference on
Integrated Space Technology
Applications to Climate Change

2 - 4 September 2013 Jakarta, Indonesia Disaster risk management

Climate change adaptation

Climate Variable

Change to Climate Variable

Impact

Risk

- temperature
- precipitation
- humidity

- hazards
- environment
- people
- elements at risk

INITIATIVES

Modeling regional climate change Early warning systems

Dynamic downscaling of future climate projections for Thailand

- Hat Yai & Chiang Rai
- Input to flood management, agriculture, tourism planning
- Use-defined temporal resolution
- Felt need: DEM to generate impact scenarios

2000 — 2009

MJJ Rainfall in

Hat Yai, Thailand

Safer communities and sustainable development through disaster risk reduction

Flood Forecasting & Early Warning Systems

Hydrological observation

- ground observation
- satellite observation

Flood monitoring

- monitoring system
- flood model

Flood early warning

- local risk assessments
- SOPs, exercise
- downscaling,
 CC impacts
 assessment

Flood Modelling System

Flood Forecasting and Warning System for Semarang, Indonesia

Initial conditions and corresponding project activities:

- Bringin river no measuring stations for rainfall, river level, stream flow; no river model; no DEM; no flood risk map → installed "automated" gauges, data collection, model development and callibration
- Satellite data for tidal forecast, no coastal inundation model → model development
- Flash flood at slope, riverine flood at the flood plain, tidal inundation at the sea → EWS development
- General understanding that climate change will increase precipitation → ???

Utility of space technology

- Digital elevation model, digital terrain model
- Images for change detection
- Generation of hazard map, land use map
- Telemetry, SMS for telemetry, GPS for positioning of measuring stations
- Possibility: gridded precipitation values that combine gauge and satellite measurement (e.g. Global Precipitation Climatology Project)

