

Satellite remote sensing data for national forest cover change monitoring to support REDD+ MRV system in Indonesia

Orbita Roswintiarti Indonesian National Institute of Aeronautics and Space (LAPAN)

Presented at the United Nations/Indonesia International Conference on Integrated Space Technology Applications to Climate Change Jakarta, 2-4 September 2013

Outline

- Background
- Development of Indonesia's National Carbon Accounting System (INCAS)
- Development of national system for monitoring forest cover change
- Need for high spatial resolution data
- Closing remarks

Background

REDD+:

Bali Action Plan (2007) in Decision 2/CP.13 considers policy approaches and positive incentives on issues relating to reducing emissions from deforestation and forest degradation; and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries".

MRV for REDD+:

Measurement (M) refers to information on the area extent to which a human activity takes place in forests (activity data – AD) with coefficients that quantify the emissions or removals per unit activity (emission factors – EF).

Reporting (R) implies the compilation and availability of national data and statistics for information in the format of a GHG inventory.

Verification (V) refers to the process of independently checking the accuracy and reliability of reported information or the procedures used to generate information.

Background (cont.)

MRV for REDD+:

- Tracks changes in forest carbon associated with drivers of forest cover change
- Compares trends in forest carbon to a 'baseline' (REL/RL)
- Measures performance of REDD policies
- Generates data for carbon accounting and reporting
- 'co-benefits': biodiversity- water- livelihoods, community participation etc.

Background (cont.)

Satellite remote sensing data Advantage:

- consistent repeat coverage at relatively frequent intervals.
- large areas (wall-to-wall).
- cost-effective, particularly for medium and course spatial resolution data.
- new sources of satellite data.

Limitations:

- canopy density and forest/non-forest area.
- extensive processing and storage systems.
- inability to obtain data/information through cloud cover (for optical data, but radar data could with other limitations).
- often costly, particularly for high spatial resolution data.

Development of Indonesia's National Carbon Accounting System

- In July 2008, the President of Indonesia and the Prime Minister of Australia signed the Indonesia-Australia Forest Carbon Partnership (IAFCP).
- Indonesian National Carbon Accounting System (INCAS) program (2009-2014) is a key component of the IAFCP.
- INCAS is designed to provide a comprehensive and credible account of Indonesia's forestbased emissions profile and sinks capacity on an annual basis.

INCAS modules

Development of national system for monitoring forest cover change

Land cover change activities:

- To build an operational system in Indonesia through transfer of knowledge and experience from Australia's National Carbon Accounting System and adapt this experience to Indonesia's requirements and conditions.
- To complete wall-to-wall land cover change analysis for 2000-2009 (first phase) and for 2010-2013 and 1990-1999 (second phase).
- Undertake wall-to-wall of forest extent and change for 2000-2009 (phase-1) and for 2010-2013 and 1990-1999 (phase-2) using Landsat data with nationally consistent methodology.
- Undertake the feasibility of integrating other data sources, such as radar and/or a variety of non-Landsat optical sensors, into the operational program.
- Develop methods for detecting deforestation and forest degradation.
- To support the national carbon accounting system and other national policy reasons, such as MRV system, land-use and policy information, etc.

Need for high-resolution data

To validate forest/non-forest detected by medium resolution data.

Quickbird multispectral image (27 Sept 2008)

2008 Landsat TM image mosaic

Forest classification (green) over Landsat image (grey)

Quickbird panchromatic image (27 Sept 2008)

Direct receiving of high-resolution data with the Government license

- The virtual reception of SPOT-5/6 data was conducted from Jan-Aug 2013.
- The SPOT-5/6 direct reception at LAPAN Ground Station in Parepare, South Sulawesi will operationally be begun in mid-Sept 2013.

 Landsat-8 data has also successfully received at LAPAN Ground Station in Parepare.

Other use of high-resolution data

Annual forest cover change (Riau, 2000-2009, source: Landsat data)

SPOT-6 data (11 May 2013)

Location A Industrial Timber Plantation

SPOT-5 data (20 April 2013)

Location B Industrial Timber Plantation

Forest cover change monitoring - now and future

Plan for operational use:

Use of high-resolution data:

- To validate forest/non-forest detected by medium resolution data.
- To identify area of deforestation and forest degradation.

Closing remarks

- Indonesia's existing receiving capacity of satellite remote sensing data (i.e. Landsat-7/8, SPOT-5/6, and Terra/Aqua/NPP) could address the need to develop a reliable and operational national forest monitoring system.
- While Indonesia's National Carbon Accounting System (INCAS) is designed to provide a comprehensive and credible national carbon accounting system, it has wider benefits in supporting Indonesia's greenhouse gas inventories, MRV REDD+, etc.
- International and regional cooperation have played important roles, amongst others data providing, knowledge and experience transfer/exchange, capacity building, etc.

Thank you for your attention