

GLONASS Current Status and Plans

Anna Dorofeeva

Senior Specialist
PNT Information and Analysis Center
Central Research Institute of Machine Building
Russian Federal Space Agency (Roscosmos)

United Nations/ICPT Workshop on the Use of Global Navigation Satellite Systems for Scientific Applications 1-5 December 2014

- GLONASS Government Policy
- GLONASS Program 2012-2020
- GLONASS Constellation Status
- Recent Events and Constellation Sustainment

- Modernization Plans
- Augmentations
- International Cooperation
- Summary

Government Policy

The Presidential Decree № 638 of May, 17, 2007

"On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation"

- GLONASS is the core element of the national PNT infrastructure ensuring national security and economic development
- PNT infrastructure sustainment and development are Government's function
- GLONASS civil services are free and unlimited globally
- Mandatory use of GLONASS for government applications and critical industries
- GLONASS Federal Program is the instrument for implementing national policy in PNT
- GLONASS Federal Program 2012-2020
 - Budget for 9 years secured
 - Most contracts awarded

Federal GLONASS Program is a basis for Russian Policy in PNT

GLONASS Federal Program Goals

- Improving system performance in terms of accuracy and integrity
- Ensuring guaranteed positioning, navigation and timing solutions in restricted visibility, interference and jamming conditions
- Enhancing current application efficiency and broadening application domains

Key Quality Indicator of Program – guaranteed provision of announced GLONASS performance characteristics

Performance Improvement Plan

Four-fold accuracy improvement

by means of

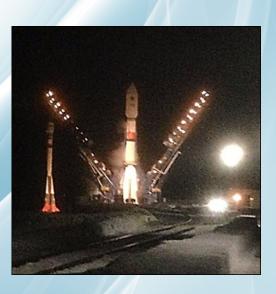
- ground control segment modernization
- introduction of new onboard atomic frequency standards (2 CAFs + 2 RAFs)
- introduction of advanced satellite control and command, orbit and clock determination technologies based on crosslinks in RF and optical bands

SIS User Positioning Accuracy, m

- transition to PZ-90.11 Geodetic System aligned to ITRF with mm level
- synchronization of GLONASS Time Scale with UTC(SU) at less than 2ns while keeping UTC(SU) long-term stability at 10 -17

GLONASS Orbital Constellation Status

(28 November 2014, 00:00)


In total	28		12 8 2
Glonass-M	27		$\begin{pmatrix} 45 \\ 7 \end{pmatrix}$ $\begin{pmatrix} 44 \\ 3 \end{pmatrix}$
Glonass-K	1		33 (34) (36) (17)
Used for navigation	24		16 II 23
On maintenance		0	15 21 37
Orbital spares		2	35 (46 14)
In-orbit flight test		1	24 54
In commissioning phase		0	$ \begin{array}{ccc} 32 & & & \\ \hline 01 & & & \\ \end{array} $
Prime Contractor Check		1	(31) (55) (19)

Latest Launches and Short-term Sustainment

- 1 Glonass-M (#54) launched March 24, 2014
- 1 Glonass-M (#55) launched June 14, 2014
- 2015-2016 up to 9 Glonass-M launches
- Further launches by Soyuz or Proton will be determined by operational necessity
 - triple launch planned for the beginning of 2015
- 1 Glonass-K in ground storage to be launched in the end of 2014

Glonass-M # 54 launch

GLONASS Architecture

Fundamental segment

UTC (SU), Earth Rotation Model and parameters, reference systems

Space Complex

MEO orbit constellation Ground control Launch facilities **Augmentations**

Space-based systems

-High accuracy

-Integrity

Regional and local differential systems for transport and geodesy

Capabilities

Integrated user equipment (communication, inertial sensors and other sources of navigation information)

Space Segment Modernization

- increase of guaranteed life-time
- evolution of satellite service systems
- more stable on-board clocks
- new control, command and ODTS technologies
- introduction of SAR payload
- new signals

GLONASS Signal Implementation Plan

Satellite	FDMA Signals		CDMA Signals		
	u	L2	L1	L2	L3
Glonass-M	L1OF L1SF	L2OF L2SF	-	-	L3OC (2014+) 7 SVs
Glonass-K	L1OF L1SF	L2OF L2SF			L3OC
Modernized Glonass-K	L1OF L1SF	L2OF L2SF	L1OC L1SC	L2OC L2SC	L3OC

System of Differential Correction and Monitoring (SDCM)

Objectives

- SBAS L1 full coverage over Russian territory by 2016
- SBAS L1 dual coverage and L5 service in the central part of Russia by 2018
- SDCM SBAS service certification by 2019
- Precise point positioning service through signals from GEO in GLONASS bands

System Architecture

Broadcasting channels

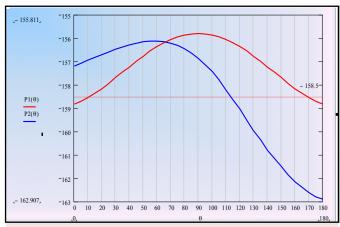
- ✓ 3 L1 GEO
- ✓ 1 L1/L5 GEO
- ✓ SiSnet server

RIMS network

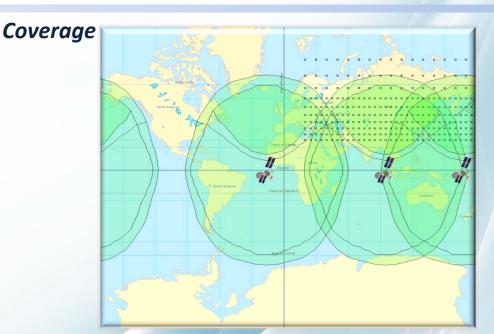
- ✓ 46 stations in Russia
- ✓ up to 8 stations abroad

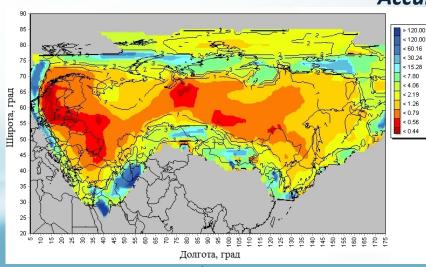
Processing Facilities

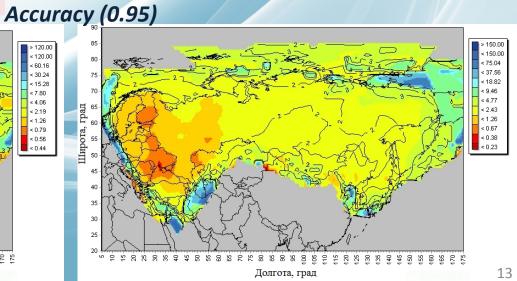
✓ Main (Moscow)


✓2 Regional

Constellation Status


- Luch-5A launched at 16° W on December 11, 2011
- Luch-5B launched at 167° E on November 3, 2012
- Luch-5V launched at 95° E on April 28, 2014




SDCM Performance

- Q elevation angle
- P1 (Q) SDCM signal level at the surface (direct beam)
- P2 (Q) SDCM signal level at the surface (7 deg to the north)

Plane

Height

Global Precise Positioning System Architecture

BROADCASTING FACILITY

Objectives:

- Global Precise Point Positioning service (real time)
- Precise Orbit and Clock generation (real-time and post-processed)

International Cooperation

International Cooperation on GNSS

Provision of
Compatibility and
Interoperability of
GLONASS with other
GNSS

Promoting Global Use of GLONASS

Pursuing competitiveness of GLONASS Enhancing System Performance

Bilateral Cooperation

China

- 13 October 2014 Signing Memorandum of Understanding
- Committee on Strategic Projects on Satellite Navigation
- Deployment of monitoring stations on mutual basis

Brazil

Deployment of GLONASS tracking stations

USA

 9 June 2012 - Renewed Statement of Cooperation between GLONASS and GPS

EU

 Consultations on Agreement on Cooperation in Satellite Navigation

Summary

- GLONASS Program is among priorities of the Russian Government Policy
- GLONASS open service is free for all users
- GLONASS Program (2002-2011) completed, goal achieved
 - Performance is comparable with GPS
 - Full constellation (24 sats) deployed
- New GLONASS Program (2012 2020) approved 3 March 2012
 - Government commitments for major performance characteristics
 - GLONASS sustainment, development, use

- GLONASS will continue
 - Keep the GLONASS traditional frequency bands
 - Transmit existing FDMA signals
 - Introduce new CDMA signals
- International cooperation aims at making GLONASS one of the essential elements of the international GNSS infrastructure for worldwide user benefits

Thank you for your attention!