Finland's public precise positioning service based on nationwide GNSS network

Dr Laura Ruotsalainen,

Department of Navigation and Positioning Finnish Geospatial Research Institute, Finland 19. May 2015

Finnish Geospatial Research Institute

- Governmental research institute for geospatial information science and technology
- Four research departments
 - Geodesy and Geodynamics
 - Geoinformatics and Cartography
 - Remote Sensing and Photogrammetry
 - Navigation and Positioning
- Current staff: about 100

FinnRef

- National network of permanent GNSS stations
 - Operated by the Finnish Geospatial Research Institute
- Some stations belong to
 - International GNSS Service (IGS)
 - European Permanent Netwok (EPN)
- Renewal process 2012-2013
- Fully operational since 2014
- Open data policy

Equipment

Javad Delta-G3T

Javad Choke Ring antenna

Antennas are individually calibrated

Photo: Geo+

Masts are on a stable bedrock

GNSS	Signals
GPS	L1, L2, L2C, L5
Glonass	L1, L2, L3
Galileo	E1, E5a, E5b, AltBOC
SBAS	EGNOS, WAAS, MSAT
Beidou	B1, B2

FinnRef

- Open data policy 2014
- Real time data streams
- Positioning service
 - GNSMART by Geo++
 - DGNSS service (free)
 - Network RTK service (pilot)
 - Rinex data (free)

More information: http://euref-fin.fgi.fi/fgi/en

Accuracy: DGNSS and DGPS

Distance to nearest station 10 km

Extrapolation

Distance to nearest station 163 km

Network DGPS Mean of errors: 95 %:

40 cm 106 cm DGPS Mean of errors: 95 %:

~24h data/ 1s interval

65 cm

119 cm

Background – Next Generation ITS 1/2

- Road-level navigation
 - GNSS + map-matching => NO PROBLEMS
- Lane-level navigation
 - better than 0.5 m positioning accuracy is needed
 - achieved with a high-cost dual frequency receiver
 - price of the GNSS receiver (> 1000 Euros) is not acceptable for mass market applications

Background – Next Generation ITS 2/2

- Safety Applications, position accuracy 0.5-1.0 m
 - Warnings for: Intersection and Forward Collision, Lane Change, Blind Spot
- Position based charging, e.g. parking
- Road maintenance, e.g. snow plowing, sanding

Mobile Precise Positioning with FinnRef

- P3-service project: a mobile public precise positioning
- FinnRef DGNSS accuracy on mobile low cost receivers > 1m
- <u>Smartphone</u> as the application platform
- Improved accuracy using carrier phase measurements

Positioning accuracy 0.5 m

FinnRef in P3-Service

- Inter-station distances: 150 300 km, shortest client-to-reference distance: < 100 km.
- New algorithms are needed for achieving a <u>0.5 meter</u> positioning accuracy with a very low cost receiver
 - Single frequency
 - Larger measurement noise
 - Larger residuals of the error models

Precise Positioning using FinnRef Network

- Precise positioning solution for free.
- Satellite and atmospheric related errors modelled
- Real-time processing in a Cloud service

P3-Service Project 1/2

- Duration 9 / 2013 11 / 2015
- Research project funded by
 - Tekes the Finnish Funding Agency for Innovation
 - Finnish Geospatial Research Institute
 - Department of Navigation and positioning
 - Department of Geodesy and Geodynamics
 - 9 Companies:
 - Microsoft => custom made mobile phone providing carrier phase measurements
 - Sonera : teleoperator

P3-Service Project 2/2

- Real-time GNSS Error Modelling
- Virtual Reference Station Generation
- Dual-Core Precise Point Positioning (PPP)- Real Time Kinematics (RTK) Algorithm
 - PPP initialized (and recovered) using RTK => reduced convergence time
 - PPP: no baseline limitation

The P3-Services

SSR= state space representation

Server/Computer center

Dual-Core PPP-RTK

- RTK available for short periods => e.g. 1 minute enough to initialize PPP
- Traditional PPP uses only subset of GNSS corrections, P3 will
 - Use also ionosphere and troposphere corrections
 - Compute single-difference between two satellites
 - Initial phase in receiver removed
 - Integer ambiguity resolution improved
 - Initialization time reduced

Initial results using PPP-algorithm

- Measurements done using U-Blox EVK-6T
- Distance to nearest station 2.8 km
- Horizontal offset 1.12 m
- FinnRef still missing ionospheric corrections
 results will improve
- RTK tested with good results
- Next steps
 - Dual-Core RTK-PPP
 - Smartphone implementation

www.enc2016.eu

European Navigation Conference 2016

Helsinki, Finland, 30th May – 2nd June 2016

IMPORTANT DEADLINES

Full-paper submission: (Scientific Track) Abstract Submission:

15th January, 2016

Abstract Submission: (Industry Track)

Acceptance Notification:

Early Registration:

15th January, 2016

31th March, 2016

15th April, 2016

