Improving Land Surface Model Simulations

Dr. Muhammad Jahanzeb Malik

Pakistan Space and Upper Atmosphere Research Commission (SUPARCO)

Contents

- Land Surface Model (LSM)
- Why to study snow...?
- Important snow variables
- Objective
- Research methodology
- Improved snow albedo parameterization
- Snow albedo assimilation approach
- Conclusions

Land Surface Model (LSM)

- LSMs compute the energy, water (and sometimes carbon) balance at the land surface
- Based on first principles: conservation of energy and mass

$$R_n = \lambda E + SH + G$$
$$\frac{dS}{dt} = P - E - R_s - R_g$$

Why to study snow...?

- More than one-sixth of the Earth's population relies on glaciers and seasonal snowpacks
- All climate models predict a near-surface warming trend
- The consequences of this on future water availability are likely to be severe

Barnett, T. P., et al. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066): 303-309.

Important snow variables

Snowpack metamorphose due to near-surface atmospheric forcings

- **Snow albedo + Snow Coverage:** Controls partitioning of energy fluxes and magnitude of water fluxes
- **Snow water equivalent (SWE) + Snow Coverage:** defines liquid water quantity

Snow is a land cover that affects world's climate, weather and hydrological systems

Objective

The presentation aims to improve the simulation of snow processes by LSMs, which ultimately improve energy and water fluxes simulations.

Research flowchart

Measured snow albedo evolution

• The albedo:

- drops to the minimum value of 0.45 0.5
- stays around this value till the snowpack remains optically thick
- decreases again when snowpack becomes optically thin
- We proposed VAriogram-Shaped (VAS) parameterization to characterize the snow albedo decay

Snow albedo parameterization

All parameterizations differ in **rate** of snow albedo evolution and **range** of snow albedo values

Comparison of simulated snow albedo

0.2

0.4

In situ surface albedo measurements

0.6

0.8

n.2

N.4

0.6

In situ surface albedo measurements

0.8

Data Assimilation

- Data Assimilation optimally integrates observed and modeled estimates to improve model simulations
- The developed assimilation approach is based upon a Direct Insertion (DI) scheme

Assimilated albedo simulations

- The assimilation improves the simulations
- The simulation improves with the quality of measurements used for assimilation

Simulations of snow properties

Snow albedo

Snow depth

Simulations of upward shortwave radiation

Satellite-derived snow cover climatology of Indus Basin

Snow cover climatology is derived:

- 1. Using time series of satellite observations from 2000 to 2014.
- 2. Following satellite sensors are employed:
 - ✓ METEOSAT
 - ✓ AVHRR
 - ✓ MODIS
 - ✓ SSMI

Simulated snow coverage for the Upper Indus River Basin

Conclusions

- Experiments like CLPX-NASA are important for understanding complex phenomena
- Assimilation of satellite-retrieved snow cover with simulation improves snow cover simulation.
- LSM simulates well the common hydrologic features of the Indus basin.
- Seasonal snow cover simulations are consistent with satellite-derived climatology of snow cover for the basin.

Simulated Evapotranspiration

Indus Basin

Simulated soil moisture

Indus Basin