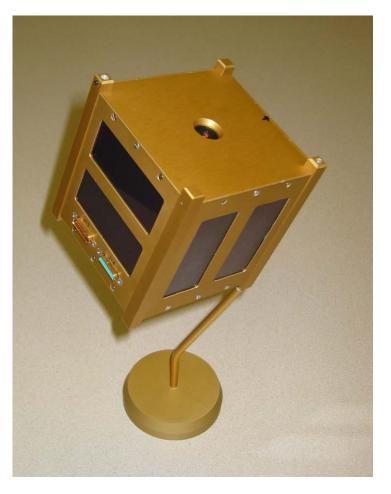
Nanosatellites for Technological and Science Missions

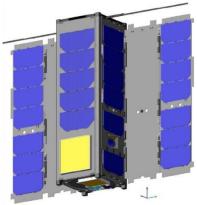
Institute of Communication Networks and Satellite Communications

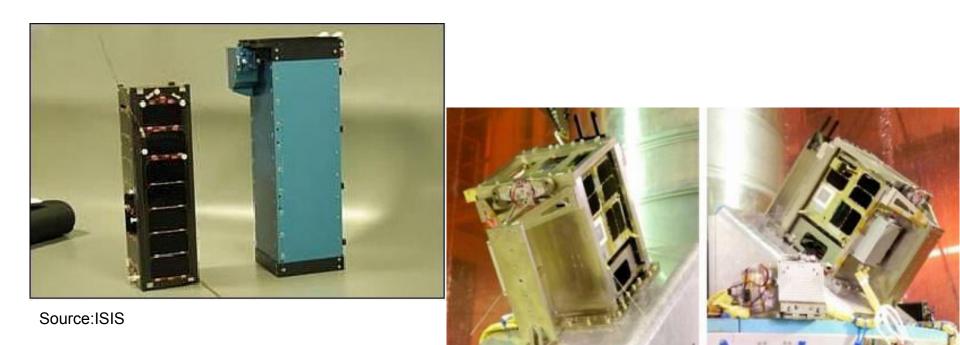
koudelka@tugraz.at


Contents

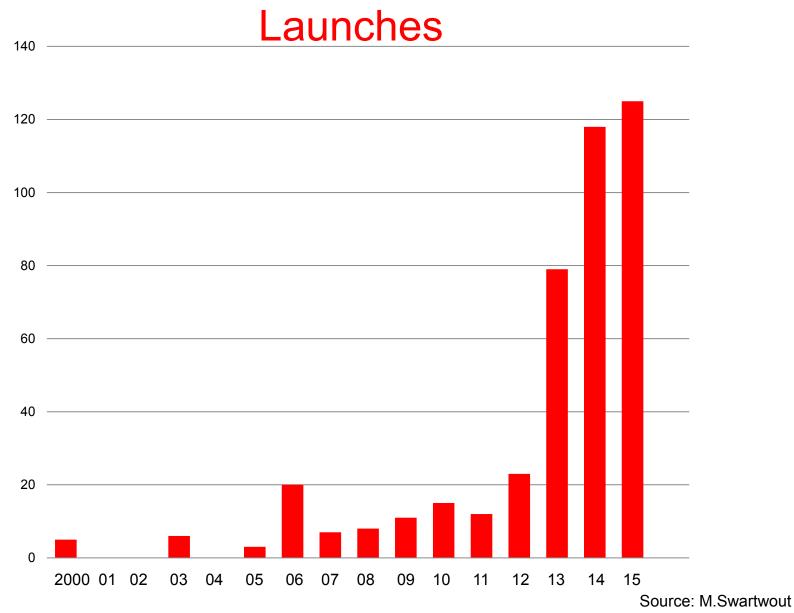
- Introduction to CubeSats and nanosatellites
- Trends in nanosatellite technology
- CubeSat Missions
- Technology for future astronomy mission
- Summary

CubeSats

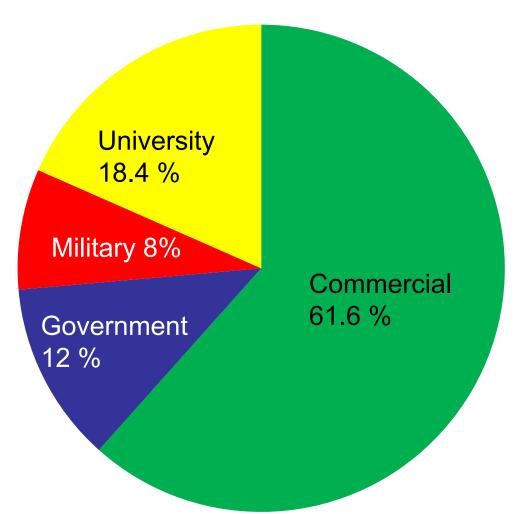

- Cubesat concept introduced by Bob Twiggs and Jordi Puig-Suari in 1999
 - small (10x10x10 cm, 1 kg Picosatellite)
 - low cost
 - short development time
 - ideal for education.
 - involvement in all phases of Space project

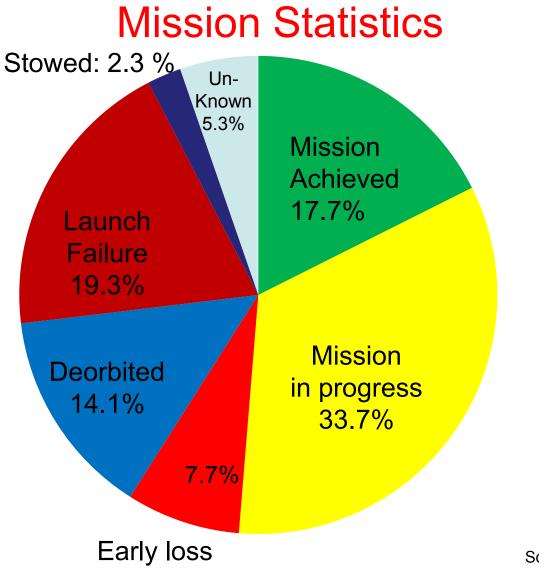

Nanosatellites

- First CubeSats launched in early 2000
- By now: > 800 nanosatellites launched
- Record in 2017: 104 on a single PSLV launcher
- Exponential increase in recent years
- Standard deployers important
 - XPOD, P-POD, ISIPOD, Nanoracks (from ISS)
- Standardized launcher interfaces
- Initially mostly 1U, 2U, 3U CubeSats
- Trend to larger nanosatellites 6U, 8U, 12U
- Nanosatellite classification 1...10 kg mass



Deployers


Source: ISRO



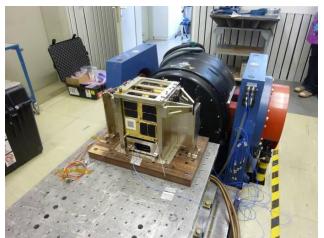
CubeSats in 2015

Source: M.Swartwout

Source: M.Swartwout

Success Rate

- In beginning failure rate of about 50 %
- Lack of experience of students' teams
- Insufficient system level testing
- Success rate has improved since:
- Commercial activities
- Space Agencies and industry became involved


Quality Assurance

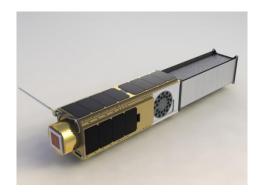
- ECSS Standard too heavy for nanosatellite missions
 - Time-consuming
 - Costly
- ESA has introduced standards tailored to nanosatellite missions (used e.g. in OPS-SAT project)
- Commercial entities take a PQ/QA approach different from traditional Space projects
 - Higher risk
 - If spacecraft fails replenished

Mission Success: Testing!

- Environmental tests on unit and system level: thermal, thermal-vacuum, vibration, EMC, open-field tests
- Burn-in tests (1000 hours on BRITE)
- Do not compromise on testing!!!

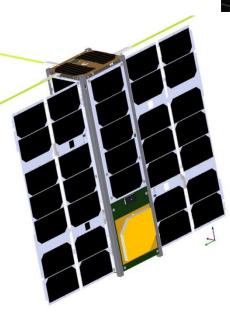
Communications

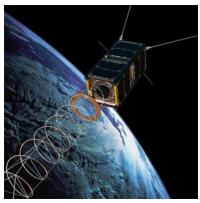
- Telemetry mostly in VHF (145 MHz) and UHF (430 MHz) amateur radio bands
- Low data rates (kbit/s)


- S-Band (2.2 GHz) so far less used
- Higher frequency bands available (C, X, Ka)

Space Missions

- Astrobiology
- Astronomy
 - BRITE
 - CANIVAL-X (NASA): formation flying, virtual telescope
- Atmospheric Science
- Biology
- Pharmaceutical Research
- Earth Observation
 - Planet Labs (commercial)

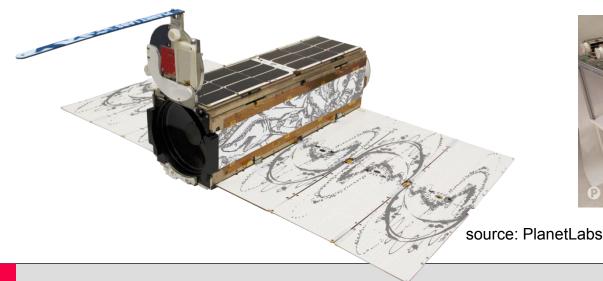



Source: NASA

Space Missions

- Space Weather
- Telecommunications
 - AIS (UTIAS, SPIRE- commercial)
 - ADS-B monitoring
 - Messaging
 - Amateur Radio
- Material Science
- Technology
 - OPS-SAT

Source: GOMSPACE



Commercial Services

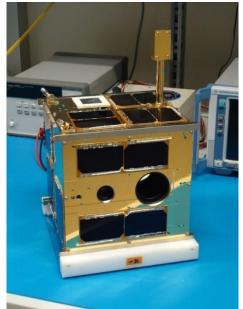
Planet (Labs)

- constellation of 196 CubeSats (in orbit)
- 3U CubeSat, mass: 5 kg
- Service: remote sensing with ~ 3.2 m ground (DOVE) resolution
- Daily revisit time
- camera with 90 mm aperture

SPIRE

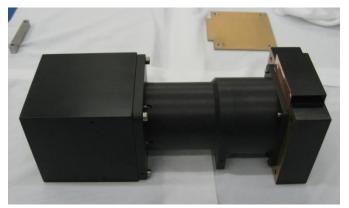
- constellation of ~ 50 CubeSats (3U)
- 26 Lemur satellites in orbit
- Applications:

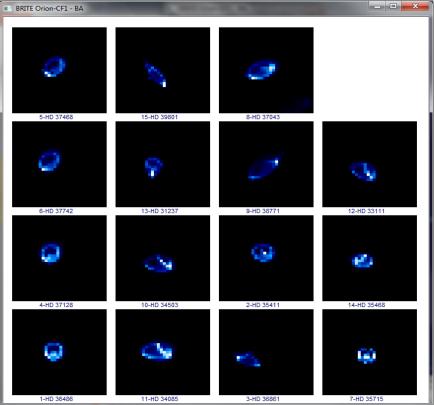
Detection of AIS signals (Automatic Identification System) Improving maritime safety GPS Occultation (weather forecasting)


Source: spire.com

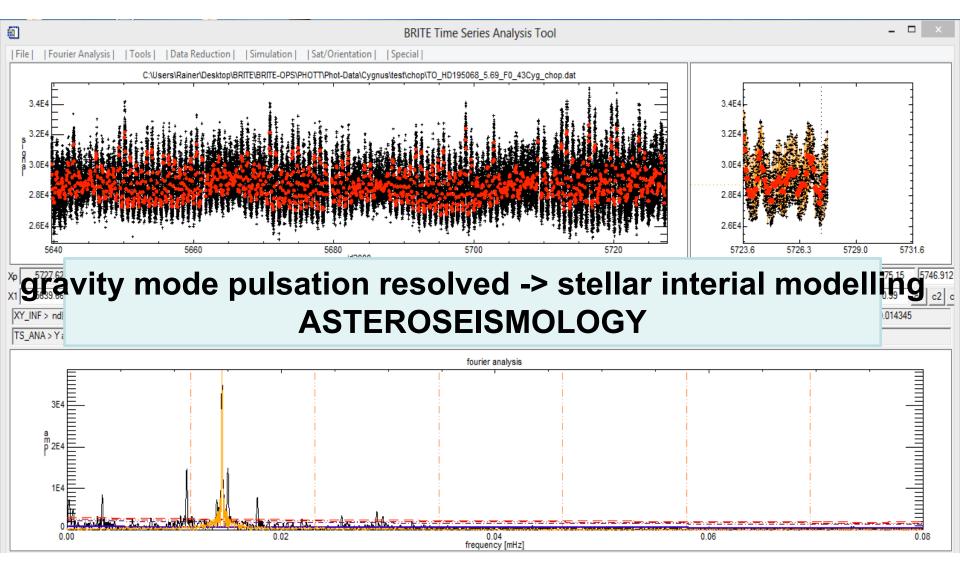
BRITE (BRIght Target Explorer)

- World's first nanosatellite constellation dedicated to asteroseismology
- 5 spacecraft
 - Austria
 - Poland
 - Canada



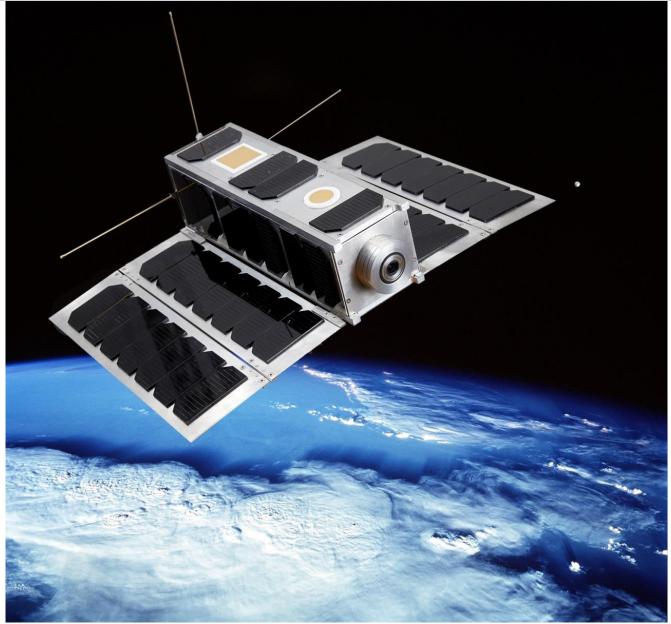

- Austrian BRITEs 4+ years in orbit
- Demonstrates that demanding science mission is possible with low-cost spacecraft

Scientific Goal

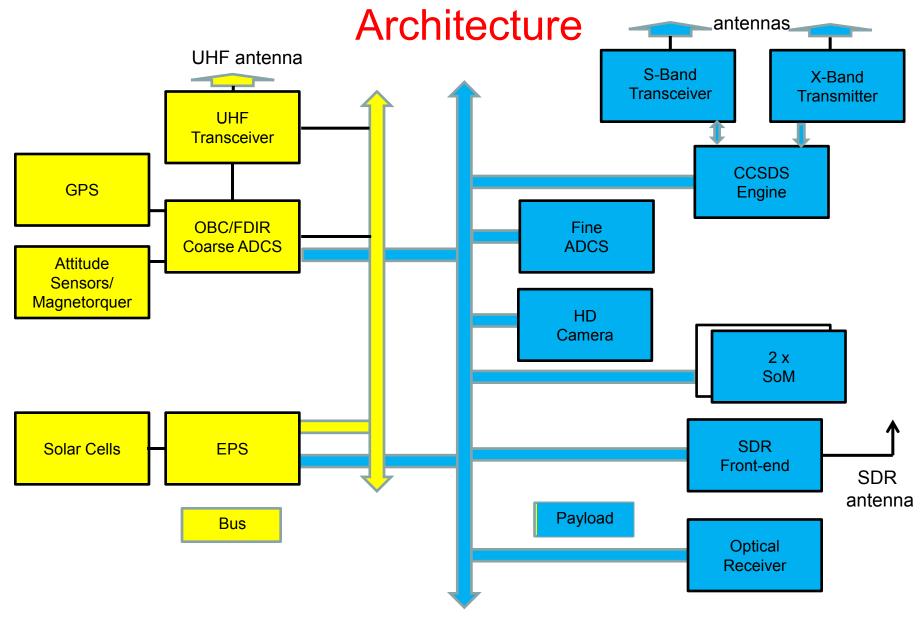

- Photometric measurement of brightness and temperature variations of massive luminous stars (up to visual magnitude 4)
- Observations: 6 months typ.
- High duty cycle
- 2-colour (blue and red)
- 24° field of view

Pulsating star:43 Cyg mag(V)=5.69 F0

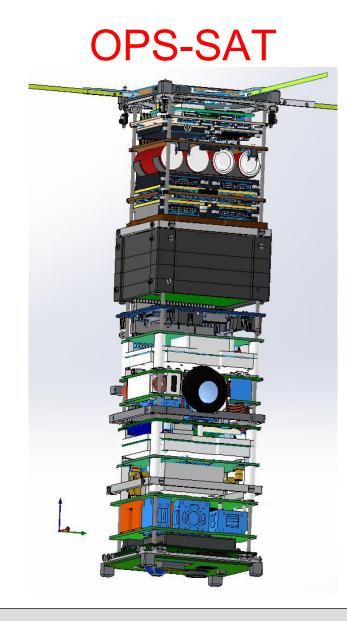
TUG SAT-1



OPS-SAT


- First ESA-owned CubeSat, initiated by ESOC
- Goal: in-orbit demonstration of new technology and novel operational concepts
 - New ground software: MO services
 - CCSDS-compatible S-band communications
 - High-speed downlink in X-band (up to 50 Mbit/s)
 - Fine-ADCS
 - Camera experiments
 - Radio signal monitoring with software defined radio
 - Optical communiations payload

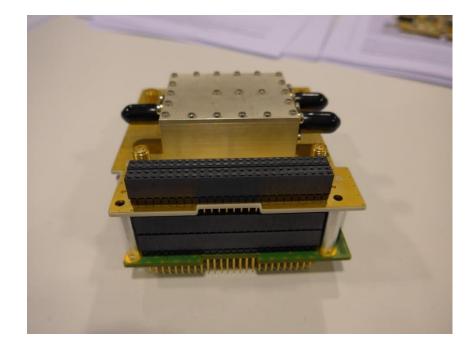
Institute of Communication Networks and Satellite Communications



- 3U CubeSat
- Mass: ~ 5 kg

OPS-SAT

- Carries powerful system-on-chip-module processor
 - dual ARM-9 processor core with 800 MHz clock and reconfigurable fieldprogrammable arrays
- Processor board developed by TU Graz
- Complete flight software can be change speed uplink)


Radiation Tests

- Critical components radiation tested at ESTEC
- 20 krad

S-Band Transceiver

- Regulated telemetry spectrum
- Uplink Datenrate: 256 kbit/s
- Downlink Datenrate: 1 Mbit/s

X-Band Transmitter

Frequency: ~ 8 GHz Data rate: up to 50 Mbit/s High science data throughput

Source: Syrlinks

OPS-SAT Comms System

- Fully compatible with CCSDS standard
- Ground infrastructure of ESA (ESTRACK)
- OPS-SAT operated as any other ESA mission
- Highest uplink data rate ever (256 kbit/s)
- New protocols tested (MO services)

CCSDS Engine

- CCSDS Engine ensures compatibility with ESA Ground Segment, both in S- and X-Band
- Developed by SRC Warsaw in cooperation with CREOTECH

Software-defined Radio Unit

- RF front-end interfacing with processing platform
- Frequency range: 300 MHz 3.8 or 6 GHz
- RX / TX capabilities
- Can be used as universal transceiver, adaptation to higher bands (Ku, Ka)

Optical Receiver

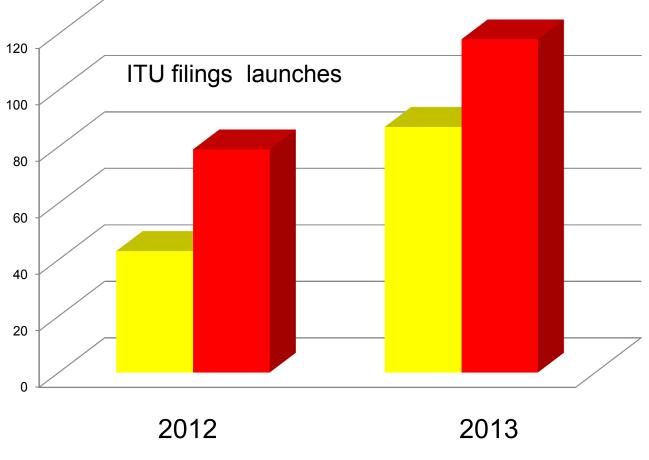
400 mJ pulse energy 10 ps pulse duration

Equivalent to 40 MW per pulse

Development by MEW Aerospace

Optical uplink from Lustbühel Observatory / Graz

Application: uplink of cryptographic key

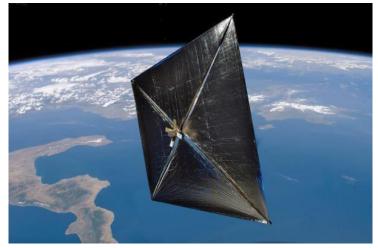


Frequency Coordination

- International and national regulations require proper frequency coordination with ITU
- Satellite owner/operator has to notify both IARU and ITU, even if only amateur satellite service frequencies are used
- Frequency coordination process is simplified for satellites using only amateur radio bands, as they are already pre-coordinated
- Traditional VHF/UHF amateur radio bands are crowded
- UHF amateur band is not exclusive

Frequency Coordination

ITU filings launches


Frequency Coordination

- Lack of coordination is breach of law
- Risk of interference
- BRITE experiences significant interference in Europe from powerful terrestrial radio sources
- For next mission use of coordinated band is recommended

Space Debris

- Increasing number of nansosatellites imposes a space debris risk
- LEO orbit crowded
- Orbit to comply with < 25 year orbital life-time
- or: active de-orbiting mechanisms
 - Deployable sails/structures
 - Drag mechanisms
 - Propulsion (e.g. micro arc-jets)

Source: sciencedaily.com

Summary

- Nanosatellites and CubeSats have matured from pure educational projects to in-orbit demonstrators
- Proof that demanding scientific and technological missions can be carried out with small satellites at low cost and within short timescales
- Industry and Space agencies are increasingly using nanosatellite technology
- Commercial services are already in place using constellations
- Reliability increased: professional implementation
- Tailored PA/QA standards introduced

Summary (2)

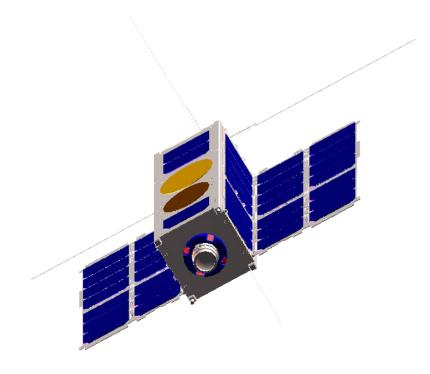
- Next astronomy mission can make use of recent developments in processors and communication subsystems
- Coordinated frequency bands should be used instead of traditional amateur radio bands to avoid interference and to provide higher data throughput

Summary (3)

- Large number of spacecraft require strict adherence to existing rules and procedures to avoid harmful interference and space-debris problems
 - Authorisation
 - Registration
 - Frequency coordination
 - Compliance with "Code of conduct"

Acknowledgements

 BRITE-Austria and UniBRITE operations is supported by the Austrian Aeronautics and Space Agency (FFG) within the Austrian Space Applications Program



Bundesministerium für Verkehr, Innovation und Technologie

• OPS-SAT is funded via ESA's GSTP Program

Thank you for your attention!

POSTGRADUATE MASTER'S PROGRAMME SpaceTech

Master of Engineering (MEng) in Space Systems and Business Engineering

⁴² SpaceTech - Content and Focus

Internationally recognized Space Experts are teaching

- Applied Project Management for Space Systems
- Business Engineering
- Space Mission Analysis and Design
- Telecommunications
- Earth Observation
- Systems Engineering
- Navigation
- Human Space Flight
- Interpersonal Skills and Leadership Development
- Central Case Project
- Master's Thesis

Wiley Larson **Michel Bousquet** Otto Koudelka Uli Fricke **Anthony Pratt** Lionel Perret Dinesh Verma Ernst Messerschmid Jeff Austin Edward Ashford Bernhard Hofmann-Wellenhof

supported by guest lecturers

⁴³ Studies & Degree

- Presence sessions which can be attended by participants while they continue to work
- Supporting distance learning elements
- It also features a Central Case Project (CCP) on which all participants work, both individually and in teams
- Master's Thesis to be elaborated by each participant & defended in front of an exam committee
- Degree: Master of Engineering (MEng) in Space Systems and Business Engineering

⁴⁴ Target Audience

- Post-graduate mid-career professionals
- Prospective future Space leaders
- from Space Organisations or from Space industry
- having at least 5 years of professional experience
- Excellent English skills

TU Graz Life Long Learning June 2017

⁴⁵ Venues are European Space Centers

6 presence sessions of 2 weeks duration each are hosted at:

ESA ECSAT, Harwell, UK

DLR GSOC, Munich, D

ESA ESTEC, Noordwijk, NL

TU Graz, Austria

ESA ESRIN, Frascati, I

near CNES, Toulouse, F

TU Graz Life Long Learning June 2017

Central Case Project (CCP)

The CCP sponsor for SpaceTech 2016 is ESA The topic proposed by the ESA DG is Moon Village The participants have to create a viable business case on the Moon

They have chosen to explore in lunar robotic services

46

Facts and Further Information

Duration of the programme: 3 semesters (18 months) Language of instruction: English ECTS Credits: 90 ECTS Start of the next programme: March 2018

Early Bird Discounts available:

Application Deadlines and Attendance Fee (VAT-free) excl. T&E:

Earliest Bird Fee: € 31,500.– (application until 30 Sep 2017) Early Bird Fee: € 32,500.– (application until 30 Nov 2017) Regular Fee: € 34,000.– (application until 15 Jan 2018)

Website: SpaceTech.tugraz.at

47

⁴⁸ Programme Direction and Contact

SpaceTech Director: Prof. Otto Koudelka TU Graz Institute of Communication Networks and Satellite Communications email: <u>koudelka@tugraz.at</u>

SpaceTech Co-Director: **Edward Ashford** Ashford Aerospace Consulting, Inc. email: <u>edward.ashford@tugraz.at</u>

> Programme Manager: **Peter Schrotter** TU Graz Life Long Learning email: <u>peter.schrotter@tugraz.at</u> Phone: +43 (0) 316 873-4935

SpaceTech Alumni Association

The Alumni Association is a very active network of dedicated Space professionals. Main contact is:

Alumni Association Chair: **Noah Saks** (ST13) Airbus Defence and Space email: <u>noah.saks@airbus.com</u>

Symposium

49

At the end of each SpaceTech Master the Alumni Association organizes a Symposium at ESA ESTEC, the Netherlands. The 2017 topic is:

"New Space: Changing the Space Business Landscape"

Career example

James M. Free: participated SpaceTech in 2003-2004 (ST6) 2013 Director of NASA Glenn Research Center (GRC) 2016 Dep. Ass. Administrator for Human Exploration & Operations

POSTGRADUATE MASTER'S PROGRAMME SpaceTech

Thank you for your attention !

TU Graz Life Long Learning June 2017

