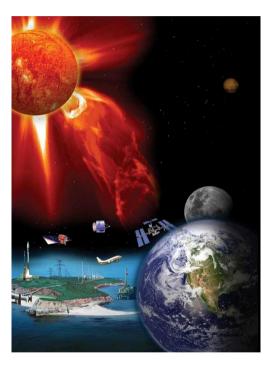

The Requirement Analysis for Useroriented Space weather Products and Services

Siqing Liu

National Space Science Center, Chinese Academy of Sciences, China

Three Rounds of Solar Attack!



Technology Systems Vulnerable to Space Weather

SATELLITES

COMMUNICATIONS

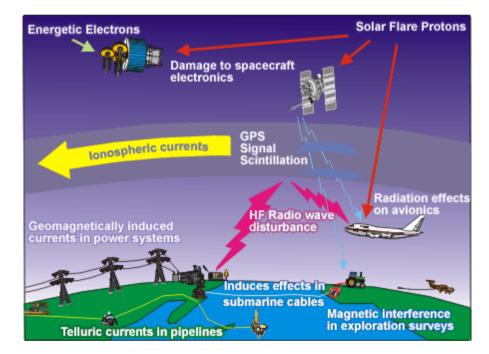
NAVIGATION SYSTEMS

PEOPLE

GEOLOGIC EXPLORATION

ELECTRIC POWER

PIPELINES


THEY NEED TO BE PROTECTED AGAINST SPACE WEATHER!

The questions are:

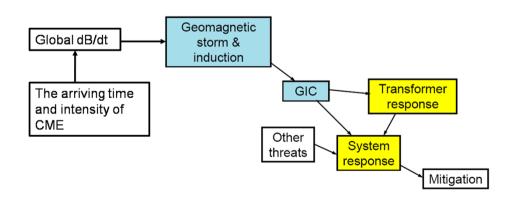
- Space weather providers: what space weather events may impact these systems?
- Technology system operators: what space weather events may impact our technology system?

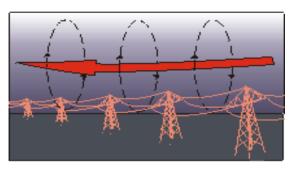
The user requirements should be identified (user-centric analysis).

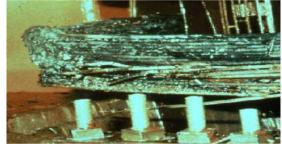
NSSC

Power Grid

What environment cause what effects?


- Geomagnetic field
 - Geomagnetic induced current (GIC)

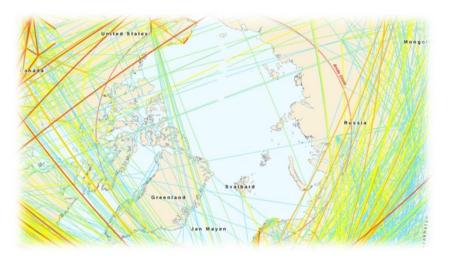

NEED TO BE ANSWERED:


(1) What space weather information are needed?

- Events forecast: CME, CIR, geomagnetic storm,
- Indices forecast: Ap, Kp, Dst,
- Environment specifications: dB/dt, Electric Field, ?

(2) How space weather information should be provided?

Aviation


What environment cause what effects?

- Ionosphere
 - Communication radio blackout
 - Navigation
- Particle Radiation
 - Human health
 - SEE: Single Event Effects

NEED TO BE ANSWERED:

- (1) What space weather information are needed?
- Events forecast: Flare, SEP, REF enhancements, SID, PCA,
- Indices forecast: ?
- Environment specifications: TEC,?

(2) How space weather information should be provided?

What environment cause what effects?

- Ionosphere
 - Propagation effect cause errors of PNT
- Particle Radiation
 - SEE: Single Event Effects
 - Surface charging
 - Deep dielectric or bulk charging
 - Total dose effects

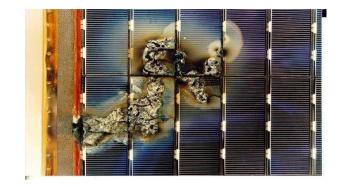
NEED TO BE ANSWERED:

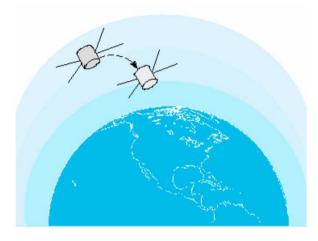
(1) What space weather information are needed?

- Events forecast: flare, CME, ionospheric storm, SID, PCA, Scintillation.....
- Indices forecast: foF2, Ap, Kp, Dst,
- Environment specifications: TEC, electron density,

(2) How space weather information should be provided?

Nssc Satellites (orbit dependent)

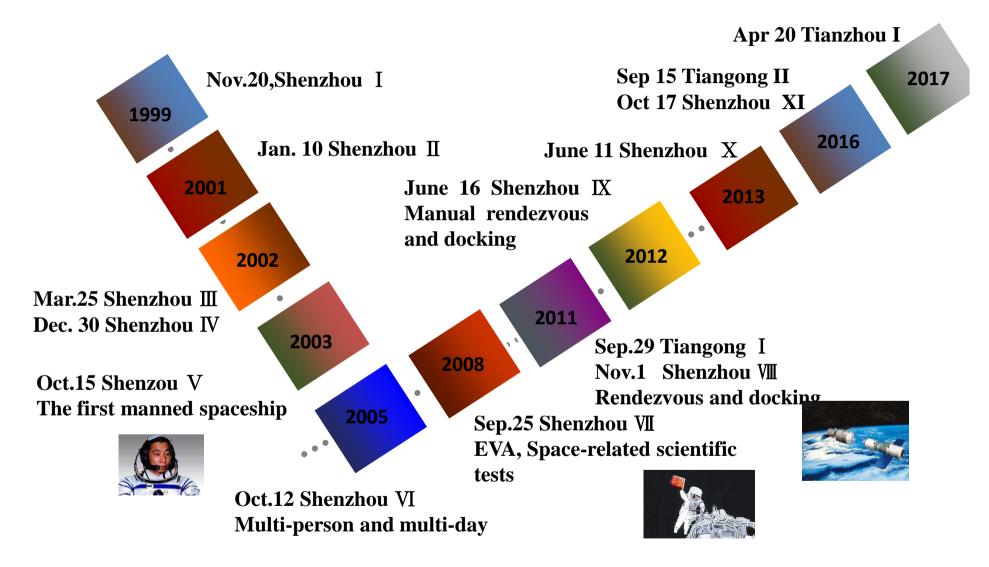

What environment cause what effects?


- Particle Radiation
 - SEE: Single Event Effects
 - Surface charging
 - Deep dielectric or bulk charging
 - Total dose effects
- Geomagnetic Field Disturbance
 - Spacecraft orientation
- Neutral density
 - Spacecraft drag (<1000 km)
- Meteoriode / Debris
 - Collision damage

NEED TO BE ANSWERED:

(1) What space weather information are needed?

- Events forecast: SEP, Geomagnetic storm, REF enhancements
- Indices forecast: F10.7, Ap, Kp, Dst,
- Environment specifications: electrons, protons, neutral density,
- (2) How space weather information should be provided?



Nesse Users requirements are different!

- Not every space weather event impact all these systems.
- Not every technology system faces impacts of all these space weather events.

Space weather services for individual technology system should be identified accordingly! (ICAO has provided an good practice.)

Services for China Manned Spaceflight Project

SEPC/NSSC has supplied space weather service in each step of China Manned Space Program for 11 Shenzhou space ships, Tiangong I & II, and cargo vessel Tianzhou I.

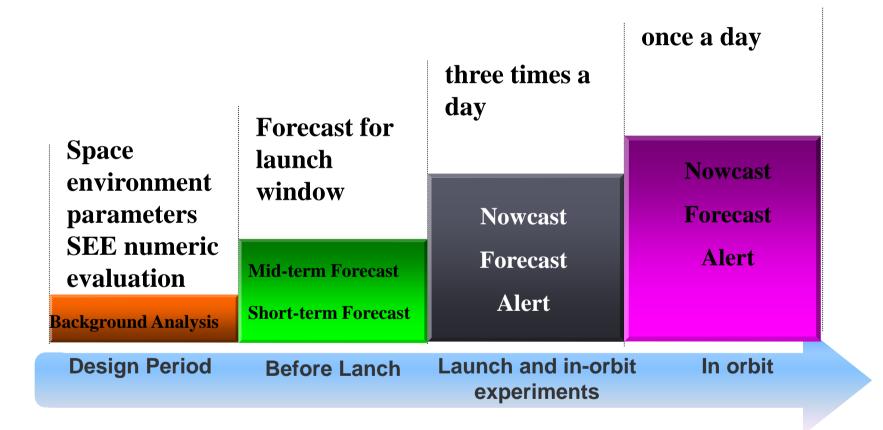
The Space Environment Related to LEO Spacecraft

Environments

- High energetic particle
- Plasma

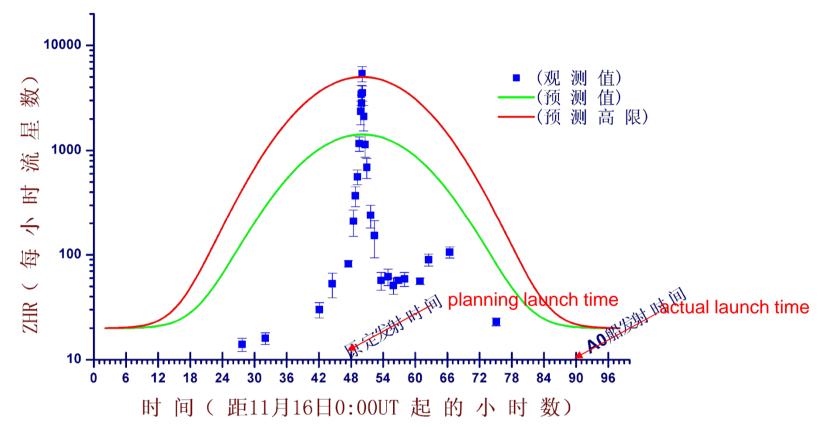
- Solar radiation.
- Geomagnetic field
- Upper atmosphere
- Meteoroide and debris

Effects


- Radiation damage
 - Charging
- Orbital decay
- Collision effects

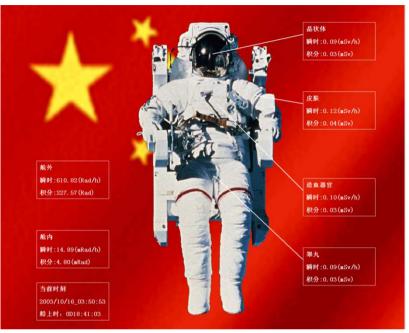
Nesse The Space Weather Forecast Requirements for Manned Spaceflights

- I. Indices
 - •Solar F10.7 (the predictions in advance of 3 days, 30 days, 6 months, 11 years, etc.)
 - •Ap (the predictions in advance of 3 days, 30 days, 6 months, 11 years, etc.)
- II. Space weather Events (occurrence probabilities)
 - •Solar proton event
 - •Solar flare
 - Geomagnetic storm
- III. Space environment specification
 - Radiation belt
 - Neutral density
- IV. Space environment effect analysis
 - SEE numeric evaluation (Single event effect, Surface Charging...)
 - Collision probability calculation

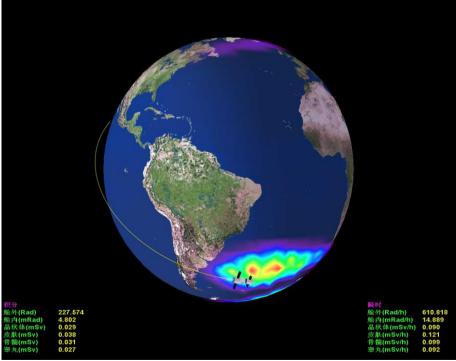


The Whole Process of Space Weather Forecast Service

Leonid Burst Prediction for Shenzhou-1

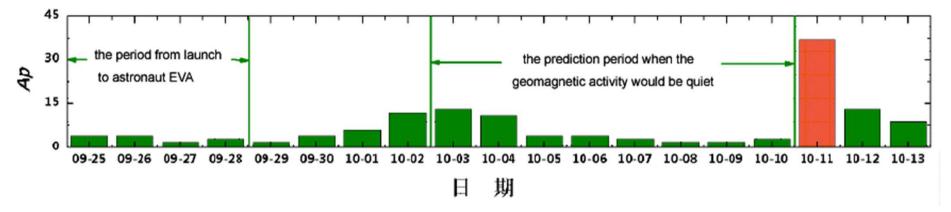


- In 1999, in order to avoid Leonid burst, Shenzhou-1 delayed its launch time from Nov.18 to Nov. 20 for 48 hours. This is the first time to change launch plan due to the space environment in China.
- According to the observation, Meteoroid flux had declined to the safe level at the launch time.


Nesse Forecast Products for Manned Spaceflights

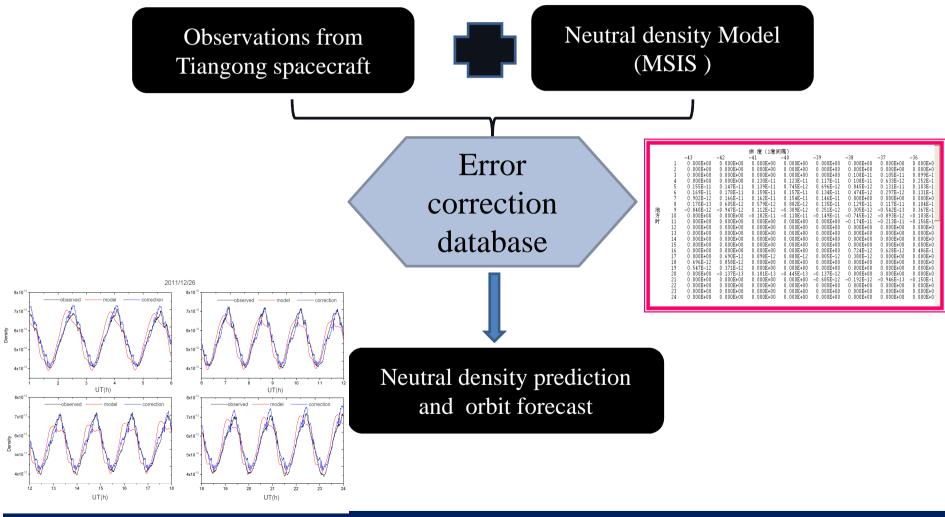
Shenzhou-1 ~ Shenzhou-6	Shenzhou-7	Tiangong-1 Tiangong-2 Tianzhou-1 Shenzhou-8 ~ Shenzhou-11
 Space environment forecasts for the task periods The SEE analysis for the launch window Space environment forecasts for in-orbit operation Space weather event alerts 	 Space environment forecast products for astronaut extra-vehicle activity (EVA) Quiet period prediction of geomagnetic field for formation flying experiment Space environment forecasts for the task periods The SEE analysis for the launch window Space environment forecasts for in-orbit operation Space weather event alerts 	 Space environment prediction for rendezvous and docking The short-term and mid- term forecast of solar and geomagnetic field indices Product for orbit forecast Synthesize information for space environment and SEE Space environment forecasts for the task periods The SEE analysis for the launch window Space environment forecasts for in-orbit operation Space weather event alerts
1999—2005	2008	2011—Now

Radiation Environment and Dose Calculation


Radiation dose received by the astronaut on the orbit

The time prediction for Crossing the SAA for Shenzhou spacecraft

Geomagnetic Quiet Period Prediction for Formation Flying Experiment


The geomagnetic Ap index during SZ-7 launch, EVA and companion microsatellite experiment

- •Shenzhou VII made formation flying experiments.
- We gave the Ap index mid-term forecast and selected the experiment window when the geomagnetic activity was quiet.

Nesse Forecast Products for Manned Spaceflights

Shenzhou-1 ~ Shenzhou-(6 Shenzhou-7	Tiangong-1 Tiangong-2 Tianzhou- Shenzhou-8 ~ Shenzhou-11
 Space environment forecasts for the task periods The SEE analysis for the launch window Space environment forecasts for in-orbit operation Space weather event alerts 	 Space environment forecast products for astronaut leaving the cabin Quiet time forecast of geomagnetic field for flying experiment Space environment forecasts for the task periods The SEE analysis for the launch window Space environment forecasts for in-orbit operation Space weather event alerts 	 space environment prediction for rendezvous and docking The short-term and mid- term forecast of solar and geomagnetic field indices Product for orbit forecast Synthesize information for space environment and SEE Space environment forecasts for the task periods The SEE analysis for the launch window Space environment forecasts for in-orbit operation Space weather event alerts
1999—2005	2008	2011—Now

Nessee The Real-time Neutral Density Error Correction for Rendezvous and Docking Tasks

The neutral density prediction for Tiangong -1

Nese How about Other Technology Systems?

- We recommend that experiences and achievements in other practices around the globe can be shared.
- It will be useful for :
 - improving service quality;
 - establishing an international frame work for space weather services.

Thanks for your attention!