

International Committee on Global Navigation Satellite Systems

The UWB Example A Place to Start

Disclaimer

The views and opinions expressed herein do not necessarily reflect the official policy or position of any government agency

What's Ultra WideBand (UWB)

 $\mathsf{Sub-nanoseconds} \Rightarrow \mathsf{GigaHertz}$

UWB vs GPS – Conflict in Priorities

- The FCC and companies like Intel, Microsoft, and Sony saw UWB as an important step forward
 - Wideband, multipath-free communications
 - "Free" spectrum
 - UWB energy is <u>lightly sprinkled</u> across many frequency bands
 - With such low spectral power density, who could care?
- Omnidirectional users of satellite signals care
 - Because satellite signals are extremely weak

Part 15 of FCC Rules

GPS Signals Start Out Very Weak

0.62 microwatt EIRP*

One Kilometer Away

*Equivalent to minimum specified GPS received power of -158.5 dBW

And can be Attenuated by Foliage

Further Attenuated by Multipath

Even More Attenuation Indoors

UWB Criteria Selected for GPS Protection

- It is not possible to regulate the user density of Unlicensed, Uncontrolled, Ubiquitous UWB emitters
 - One prediction: "1,000's in homes, 1,000,000's in an industry"
- It is only possible to regulate the emissions from each individual device
 - Backed by a vigorous testing and product recall program
- Therefore, in the GPS bands the UWB criteria is:
 - Allow each UWB emitter to raise the GPS noise floor
 - By 26% (1 dB) at a distance of 6 feet (1.83 m)
 - Which requires an EIRP at or below –75.3 dBm/MHz (–105.3 dBW/MHz)
- In comparison, the cost and the time required to raise the power of all 28-31 GPS satellites by 26% would be Billions of dollars and at least 15 years

Cover of December 2001 FCC Presentation

Walk <u>DON'T</u> Run -The First Step in Authorizing Ultra-Wideband Technology

Ron Chase

ITU-R Chair U.S Task Group 1/8 on UWB Federal Communications Commission

-75.3 dBm/MHz, 34 dB Below Part 15 Limit UWB Emission Limits

Indoor Communications Systems

Equipment must be designed to ensure that operation can only occur indoors or it must consist of hand-held devices that may be employed for such activities as peer-to-peer operation.

-75.3 dBm/MHz, 34 dB Below Part 15 Limit

UWB Emission Limits Outdoor Communication Systems

Equipment must be hand-held.

Using the UWB Agreement as a Model

- Based on the UWB Agreement, the following chart shows:
 - The Equivalent Isotropic Radiated Power (EIRP)
 - Of Out-Of-Band-Emissions (OOBE)
 - Received within the GPS L1 band
 - From a transmitter at an <u>assured</u> minimum distance from any GPS receiver
- This must be achieved by
 - Filtering at the transmitter
 - Transmitter power control if needed
- <u>Assured</u> distance means the GPS receiver and the transmitter must <u>never</u> be that close

OOBE EIRP vs. Assured Separation Distance

Unintentional Radiation Limit

- The FCC regulates unintentional radiation with Part 15 rules, requiring EIRP to be less than -41.3 dBm/MHz
- The UWB industry asked the FCC for permission to intentionally transmit that level of noise-like signal, including within the GPS spectrum
- Ultimately, the FCC UWB Report & Order (R&O) limited most UWB emissions to -75.3 dBm/MHz EIRP, 34 dB less than Part 15 power in GPS bands
- What reasonable limit should apply to unintentional radiation?
- What standard does your country use?

GNSS INTERFERENCE FROM TERRESTRIAL BROADBAND NETWORKS IN THE ADJACENT BAND

Differences between GPS satellites and terrestrial transmitters

	GPS Satellites	Terrestrial Transmitters
Center frequency	1575 MHz	1531 MHz
Distance from GPS receivers	≥ 20,000,000 m	≥ 76 m
Transmitter power	107 W	9 W to 1585 W
Received power spectral density at center frequency	≤ -158 dBW/MHz	-75 dBW/MHz
Analogy		

Power differential is analogous to the vibrations from tapping a Q-tip on a Kleenex box vs a jack hammer on concrete

GPS Receiver Diagram

GPS Receiver Design Tradeoffs

- Aggressive filtering possible/required
- Relies heavily on Assisted-GPS (A-GPS)
 - Decreases time to first fix
 - Allows navigation to continue when GPS unavailable
 - Requires connection to cell
 network
- 1-10 m accuracy (w/ A-GPS) is sufficient

- Aggressive filtering degrades
 precision
- Cannot rely on A-GPS due to lack of coverage in rural environments (nor would traditional A-GPS offer significant improvement due to accuracy requirements)
- Accuracy down to centimeter level can be required

Hypothetical Filter Gain versus Frequency

Filter Gain G_r (dB)

The Lightsquared antenna demonstrates a larger group delay and much more ripple in the L1 band.

Gain Sweep Comparison Between Antennas

Take Aways

- Spectrum protection is an art, not a science
- GNSS community must continue to educate spectrum regulators on the unique properties of the GNSS receivers vs other RF receivers (e.g., SATCOM)
- Billions of users worldwide and countless applications make GNSS spectrum worth defending

