

"Creating Novel Opportunities with Small Satellite Space Missions"

Microsatellite µSat-3 Development

µSat-1 "Victor"

Inner and outer Structure

Paradigm Shift

Know How y Technology Foreigners

> Greater Total Cost

Local Technology and Know How Lower Total Cost

Minimum Human Resources Training

Important Human Resources Training

µSat-3

DEVELOPMENT

PHASE A: Concept Analysis Feasibility of subsystems is assessed.

PHASE B: Concept Definition System working at laboratory level.

PHASE C: Concept Development System working at engineering model level.

PHASE D: Concept Qualification System working at flight model level.

MAIN OBJETIVES

To 'take and send' pictures of the Argentine mainland, both in Low Resolution Mode and in High Resolution mode, as requested by the Ground Station:

- High resolution 10 m/pixel
- Low resolution 100 m/pixel
- **Revisit Time < 4 days**

Maintenance Maneuvers of orbit parameters

Orbital Position Maneuvers for flight in Constellation

Put out of Orbit

Development Philosophy

- Keeping paperwork at the minimum level.
- Producing real hardware and software as early as possible.
- -Use of comercial/industrial hardware when possible

-Qualification functional and environmental tests are performed at system level.

- Strong involvement of specialized task groups belonging to Government institutions, Universities and Industry.

- Very simple core group topology with a minimum of authority levels.

Dimensions : 340 x 340 x 430 mm. Configuration : Three plates and four struts inner structure, outer lateral shroud. Attach fitting : A single high reliability pyrobolt.

Vehicle General Layout – Inner and outer Structure

Pulsed Plasma Thrusters

Reaction Wheels

Reaction Wheels

- Mass: 0.250 kg
- Dimensions: 75 mm diam. * 30 mm high
- Angular Moment: 4.45*10⁻² Nmseg
- Angular Speed: 6000 rpm
- Torque max.: 7*10-3 Nm
- Power Supply: 12 V
- Error in Position: 60 deg (=> 0.005 deg)
- Error in Speed: 90 rpm (=> 0.044 deg/seg)
- Ω_{sat} max = 0.48 rpm (3 deg/seg) Ω^{dot} max = 9 mrad/seg² (0.5 deg(seg²)

Raft Wood

Magneto Torquers (Test)

- Based in µSat-2
- 3 Coils (Quadrature Axis), 0.5 A-vuelta-m²
- Independent Control

IMAGE ADQUISITIÓN SYSTEM

Comunication

With **OBC**

Camera 1 (wide angle): Commercial/Industrial Cámera Resolutión 5 - 15 Megapíxels Focal Length 50 mm Maximun Aperture 1:1.4.

Camera 2 (narrow angle):

Commercial/Industrial Camera Resolutión 5 - 15 Megapíxels Focal length 100 – 200 mm Maximun Aperture 1:2.8

UHF link (Telemetry Data and Commands) 400MHz – FSK – Bit Rate 56Kbps – 5W

Band "S" link (Images) 2260Mhz – QPSK – Bit Rate 2Mbps – 5W

Ground Station (CIA) United Nations/Brazil Symposium on

O.B.C.

Cortex-R4F@160Mhz RISC 32 Bits

- 1,66 DMIPS/MHz
- FPU double precision
- 3 MB Flash with ECC
- 256 KB RAM with ECC
- Power Consumption < 2 W
- Eurocard Form FaCTOR

- BIST integrated diagnostics, monitoring,
- Voltage & Clock, redundant Watchdog
- Automatic Switch to backup in case of failure
- Total or partial reconfiguration from ground
- Processor certified for Safety Critical Apps
- Functional Safety. ISO26262
- SafeRTOS Certification Option
- Aerospace DO178C DAL A

Triaxial Magnetometer

Magnetic Field Simulation System

3D Model

- Used OpenGL (Open Graphics Library) en C++
- Centrum of Coordinates Axis in the satellite.
- Sun Light incidence on the satellite.

PULSE PLASMA THRUSTER SOLID PROPELENT - P4S-2

BASIC CHARACTERÍSTICS Status **Power Required Ejection Velocity Total Impulse Total Thrust Specific Impulse Total Mass Propelente Aplications**

- : Development Model
- : 25 Watts
- : Between 10.000m/s y 30.000 m/s
- : 1500 N-s
- : 0.28mN
- :994s
- : < 5kg
- : PTFE (Teflón)
- : Attitude Control, orbit change and maintenance

Pulse Plasma Thruster Solid Propelent

Put Out of Orbit

- 30 days without propultión
- 130 days with inverse propultion
- Final Step 17/18 months (atmospheric braking)

