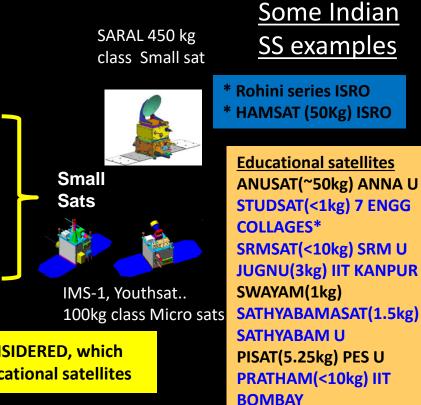
Systems Eng of Small Satellites and AI

Raghava Murthy V A Dantu

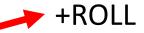
Director (Aerospace Research) Veltech R&D Institute , Chennai Former Director (Small satellite Projects), ISRO Secretary, SSSS


Points covered in talk

- System of Small Satellites
- Systems Eng of IMS-1
- Mission Aspects and demands
- Systems Engineering for constellations
- Capacity Building

Small Satellites : MINIATURISATION WITH A MEANING

Satellites


- Following definition of small satellites, <1000kg classes are CONSIDERED, which include operational, experimental, scientific, exploratory and educational satellites
 - FAILURES ARE POSITIVE FEEDBACK LEARN AND CORRECT (ALL BIG ** SPACE ORGANISATIONS FOLLOWED THIS PATH)
 - **GOOD DOCUMENTATION IS ESSENTIAL IT SHOWS WHERE TO** • • CORRECT

NIUSAT(~15kg) NURUL

INS-1A/B/C (<5Kg) ISRO

ISLAM U

- MISSION GOAL DEFINES SYSTEM
- GOAL CAN BE SOCIETAL APPLICATION, TECHNOLOGY DEVELOPMENT OR KNOWLEDGE EXPANSION
- SYSTEMS ENGG IS THE PROCESS TO MAKE THE SYSTEM
- NEVER LOSE SIGHT OF THE GOAL

+YAW

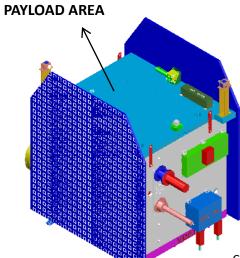
IMS-1 AXES DEFINITION

+PITCH

IMS-1 BUS SPECIFICATIONS & PAYLOAD CAPABILITY

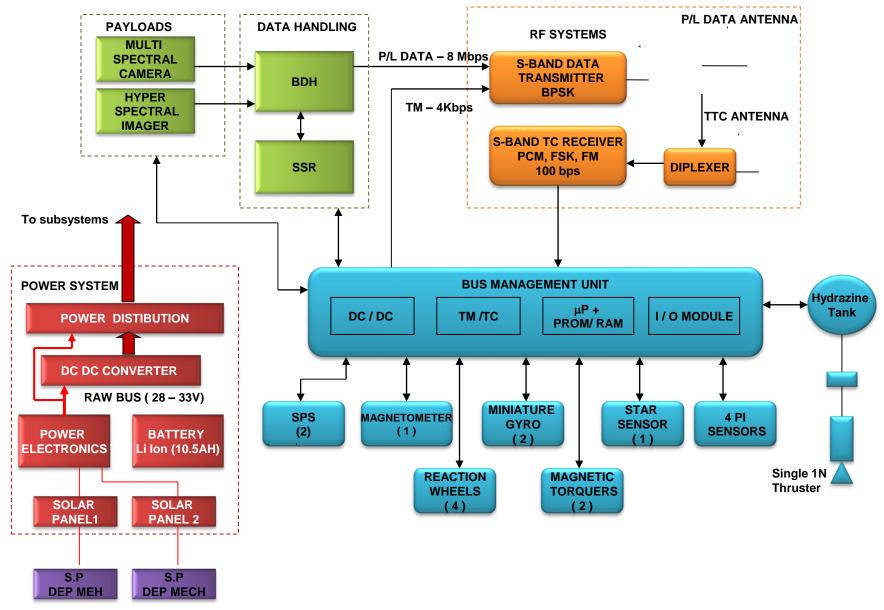
SPACECRAFT

- 70 kg platform / 30 kg payload
- Orbit -SSO
- 500 1000 km orbit altitude
- Single System Configuration
- Life 2 years


MAJOR PLATFORM SPECIFICATIONS

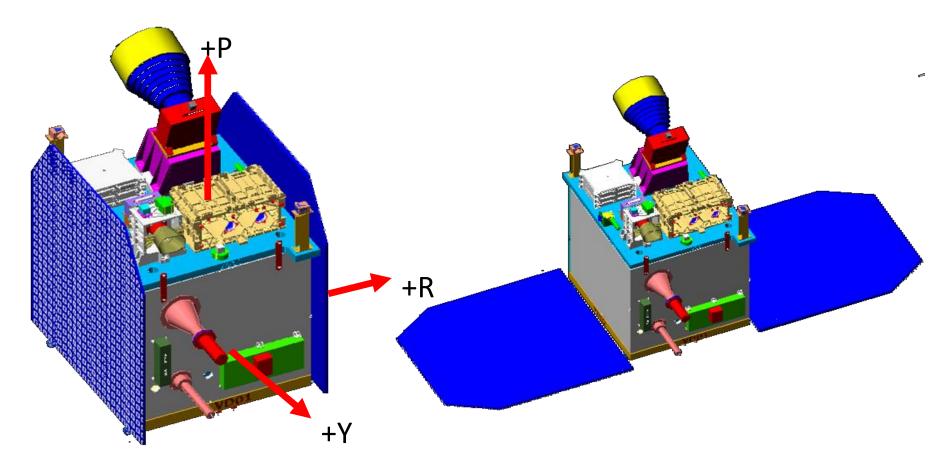
Dimension	552 x 600 x 600 mm
Mass	70 kg
Attitude Control	3-axis stabilized
Pointing Acc	0.1 deg
Drift rate	5.0 e ⁻⁰⁴ deg/sec
Science Data	S-Band @ 8 Mbps
TM Data	S-Band @ 4Kbps
TC Data	S-Band @ 100bps
Power Generated	230W
Platform Power	70W

PAYLOAD CAPABILITY

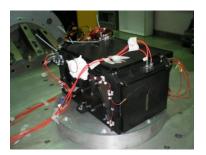

Mass	30Kg max
Volume	450 x 600 x 500
Interface	LVDS
Data Rate	10 Mbps max
Power	30W Continuous
	70W Duty Cycle
Power Bus	28 – 33V

Ocean and Atmospheric missions
Earth Imaging Payloads
Microwave remote sensing payloads
Scientific Payloads

5


IMS-1 CONFIGURATION

6

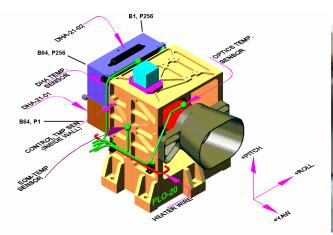

IMS-1 STOWED VIEW

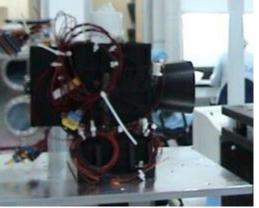
IMS-1 DEPLOYED VIEW

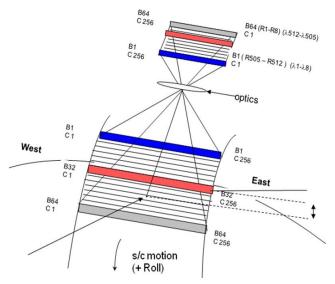
PAYLOAD - MINIATURIZED MULTI SPECTRAL CAMERA

Mx : 300 x 148 x 227 mm / 5.5 Kg

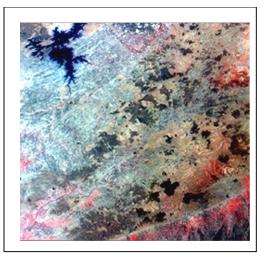
LISS 2A/B - 162 Kg


HIGHLIGHTS:


- -Indigenous 4K Linear Array CCD, 7μ x 7μ pixel
- Modular Configuration
- •Miniaturized Electronics using AFE, FPGA Micro D, MLB
- •Miniaturized LENS assembly (0.27kg) compared to LISS2 (6.5kg)
- •Usage of COTS AFE.
- •Multi Linear Gain Implemented in FPGA
- Application Natural resource monitoring


Multi Spectral camera Image - Rameswaram , Tamil Nadu

PAYLOAD - ADVANCED HYPER SPECTRAL IMAGER



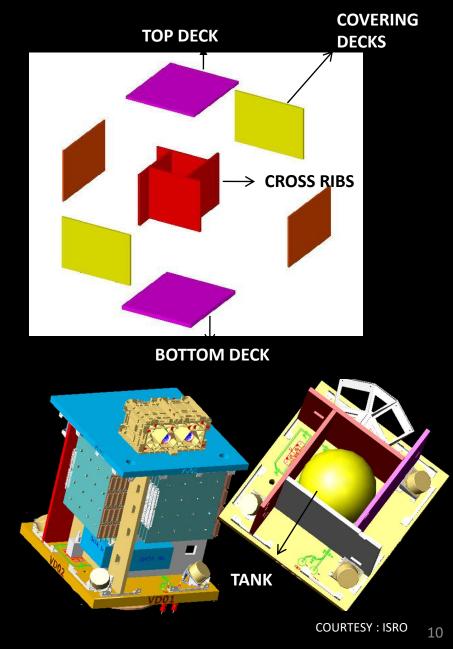
HySi Viewing Geometry

Hyper Spectral camera Image - Part of Madhya Pradesh

HIGHLIGHTS:

- Detector: Area array (512 row x256 columns) Active Pixel technology; 12 bit digitizer
- Wedge Filter for spectral separation; sampling at 1nm interval and 8nm bandwidth
- Optics: Multi lens assembly
- 512 bands processed to 64bands by binning
- Application –Ocean and atmosphere study with fine spectral resolution

MINIATURISATION WITH A MEANING


STRUCTURE

DESIGN

- Structure is built in a classical manner
- Aluminum honey comb sandwich based cuboid structure with a bottom deck, top deck and four cross ribs in a staggered fashion
- Four thin aluminum panels for covering deck
- Generates a central core to house tank and thruster elements

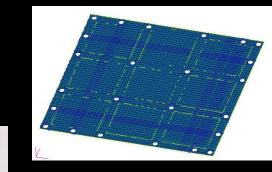
SALIENT FEATURES

- Direct Assembled Mode IST. (Systems mounted on Cross Ribs)
- No patch harness requirement
- Structure assembly time is less
- Provides easy unit access , flexible integration and checkout
- Reusable to maximum extent for other technology demonstration missions
- DESIGN STURDY TO MEET SURVIVAL REQ
- DESIGN AS A BUS WITH MODULARITY, ACESSABILITY AND ADOPTABILITY

SIMPLICITY IS BEST ENG

NEW PACKAGING CONCEPT

SYSTEM ON CARD REALIZATION


- •Individual subsystem electronics are reduced to single PCB.
- Six Systems Realized on 12" x 12" PCB

STACK1: BMU, PSDC, WDE STACK2: IRU, BDH, SSR

ADVANTAGES

- •Optimal utilization of available area and volume at S/C level.
- •Reduction of mechanical hardware mass/subsystem.
- •Reduction of intra and inter package harness.
- •Standard packaging concept for small satellites.
- •Better thermal management at S/C level.
- •Reduction of integration and testing time.
- •Reduced no of components Less failure / More reliability

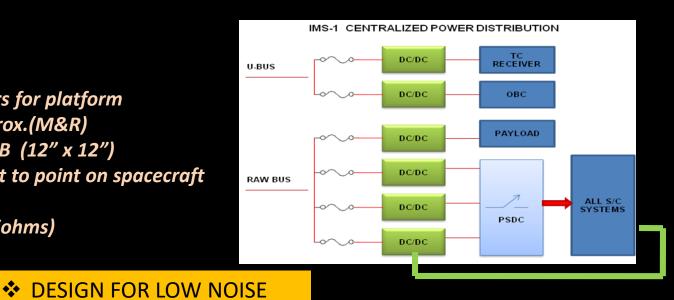
PCB STACKS

EXAMPLE: BMU MINIATURIZATION

SYSTEMS	CONVENTIONAL BMU	IMS BMU
No of PCBs	8 cards	1 card
MASS	12.5 kg	1.3 kg
РСВ	8" X 9"	12" X 12"
POWER	20W	7W
H/W REALIZATION		3 MONTHS

CONVENTIONAL S/C BMU

IMS-1 BMU

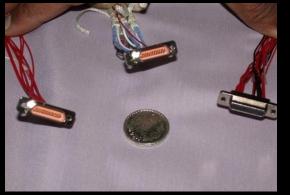

CENTRALIZED POWER DISTRIBUTION SCHEME

REALIZATION HIGHLIGHTS

- Shared DC DC Converters used to meet Platform voltage requirements
 → Mass and Volume Saving at Spacecraft level
- Switched Secondary voltages provided to Sub Systems
 → Better real estate offered for Subsystems
- Spacecraft Structure used as secondary return path
 → Harness Reduction

ACHIEVEMENTS

- Only Five DC DC converters for platform IRS - 50 approx.(M&R)
- PSDC realized in single PCB (12" x 12")
- Resistance from any point to point on spacecraft < 5 milliohms
 - (IRS ~ 20 milliohms)
- Harness reduction


MICRO D CONNECTORS & FLEXI PCB

FLEXI PCB FOR HARNESS

Implemented for the first time

- Reduces the no of connectors
- Reliability, Simplified Assembly
- Results in fewer wiring errors
- Repeatability and High Density.

MICRO D CONNECTORS FOR HARNESS

Implemented for the first time

- Less volume and weight
- 70% Micro D Connectors used

•Single harness for total spacecraft without any patch connectors

• Total harness has been formed on the harness jig itself

 USE MINIATURE COMPONENTS WITH QUALITY
 RELIABILITY IS RESPECTED AND IT PROTECTS GOAL

DATA HANDLING SYSTEM – NEW TECHNOLOGIES

<u>BDH</u>

JPEG 2000 Compression

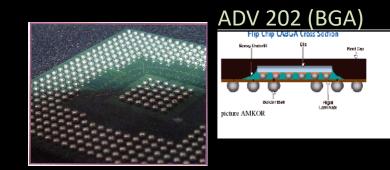
- Wavelet based Algorithm
- Improved low bit-rate compression performance (50% better than JPEG)
- Programmable compression ratio
- Improved lossless and lossy compression

RS Coding / Formatting

Use of BGA for the first time

Realized in a single 12" x 12" PCB (1kg)

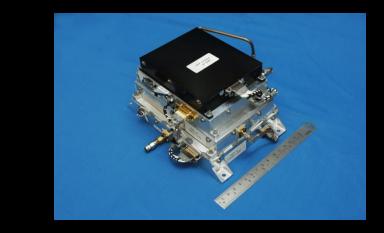
Standardized electrical interface for payloads


<u>SSR</u>

Low Power, Volume and Mass (0.8kg) Realized in a single 12" x 12" PCB

Use of SDRAMS for the first time

HIGH THROUGHPUT WITH EXPANSION
 STADARDISATION WITH SCALING


SSR (12"x12", 0.8 kg)

RF SYSTEMS – NEW TECHNOLOGIES

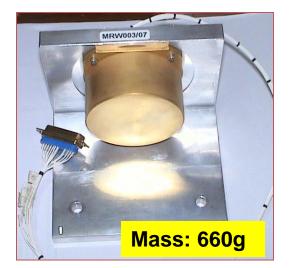
DIGITAL S-BAND RECEIVER

- Digital Non Coherent Receiver
- DSP based FM/FSK demodulator
- Less volume , mass and power (1.5 kg)
- Programmable / Reconfigurable
- Highly suitable for micro satellites where space and power is premium

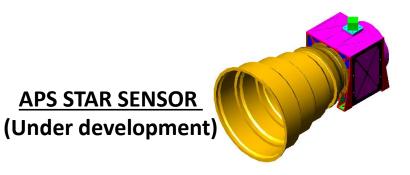
SS TECHNOLOGIES : GREAT CHALLENGES AND RESEARCH OPPORTUNITIES

SINGLE S-BAND TRANSMITTER FOR DATA / TM

- Single S-Band transmitter for Payload data/ TM
- Operates in high power / low power mode
- Direct modulation PCM/BPSK


MINIATURE SPS

- Miniature SPS from SSTL; In-house developed SPS Interface module
- Less volume, mass and power (1 kg, 1 W)
- Highly suitable for micro satellites where space and power is premium


AOCS – NEW TECHNOLOGIES

MINIATURE MAGENETOMETER (MEMS)

MICRO REACTION WHEELS

- EXPERIENCE GIVES BOOKS BOOKS DON'T GIVE EXPERIENCE
- EXPERIENCE IS THE REAL KNOWLEDGE

Mass: 1.76 kg

MINIATURE GYRO

SOLAR PANEL DEPLOYMENT MECHANISM

HINGE MECHANISM with tape springs

Implemented for the first time

Provides the energy for solar panel deployment and acts as the latch on deployment of panels. Advantages

> Self drive & Self latch Less number of moving parts Less friction Low Mass (Tape spring -90g)

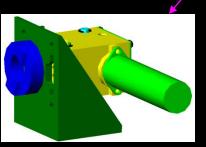
HOLD DOWN AND RELEASE MECHANISM

(Paraffin Actuator Based) Implemented for the first time

Retains the stowed panel integrity on ground, during launch and ensures a reliable release of the panels on command.

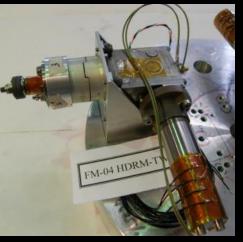

Advantages...

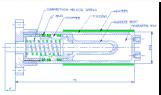
Non - explosive & Low source shock Reusable


High reliability

low mass (Paraffin actuator – 75 g)

NECESSITY IS MOTHER OF INVENTION


SOLAR PANELS STOWED



TAPE SPRING HINGE (SELF DRIVE & LATCH TYPE)

HOLD DOWN & RELEASE MECHANISM

INDIGENOUS PARAFFIN ACTUATOR

COMPONENTS / QA PHILOSOPHY

COMPONENT PHILOSOPHY FOR EEE PARTS

•MIL grade parts preferred

•Industrial / COTS components usage allowed after Review

Nearly 40 components used in IMS-1

•Usage of radiation-hardened components not mandatory AT ALL PLACES

•Shielding to be provided for parts if TID hardness is less than 10 k rad.

MATERIALS AND PROCESS CONTROL

• Usage of Commercial materials encouraged after Review

• Some of the new processes in IMS-1

Wiring of Micro-D connectors

Flexi PCB usage

Mounting of the compression chip BGA in BDH

TEST AND EVALUATION

•Simple Non conformance control methods

•Responsibility of unit-level testing transferred to the subsystem manager

REALIZATION PHILOSOPHY

- Single Model Philosophy except for new development systems
- NANO SATS ENTERING OPERATIONAL AREA REQUIRES STRONG QUALITY ASSURANCE

		IRS 1A/1B Mass –975 Kg Power – 600W Payloads – LISS	EXTENT OF MINIATURIZATION -1,LISS –2A, LISS-2B GO AHEAD AGAINST ODDS – THESE ARE NATURAL FOR INVENTIONS
SUB-SYSTEMS	WEIGI	HT(Kg)	
	IRS	IMS-1	Mass – 83 Kg
PAYLOAD	160	5.5	Power – 80W
POWER EL	11	3	Payloads – Multi Spectral Camera Hyper Spectral Camera
BMU	12.7	1.5	
SSR	9.5 (60GB)	0.9 (16GB)	IMS-1
BDH	21	0.9	
STAR SENSOR	5	3	
WHEELS (4 NO.)	20(5NMS)	3.2(0.36NMS)	
WDE	3	1.5	
GYRO UNIT	14.5	1.8	
GYRO ELE		1.5	
RF RECEIVER	4	1.5	
MECHANISMS	11		COURTESY : ISRO

ISSC 1 - IMS1 TECHNOLOGY ACHIEVEMENTS 28.04.2010 ISAC/ISRO

✤ AVOIDING TESTS ENSURES RISK

IMS-1 - GLIMPSES

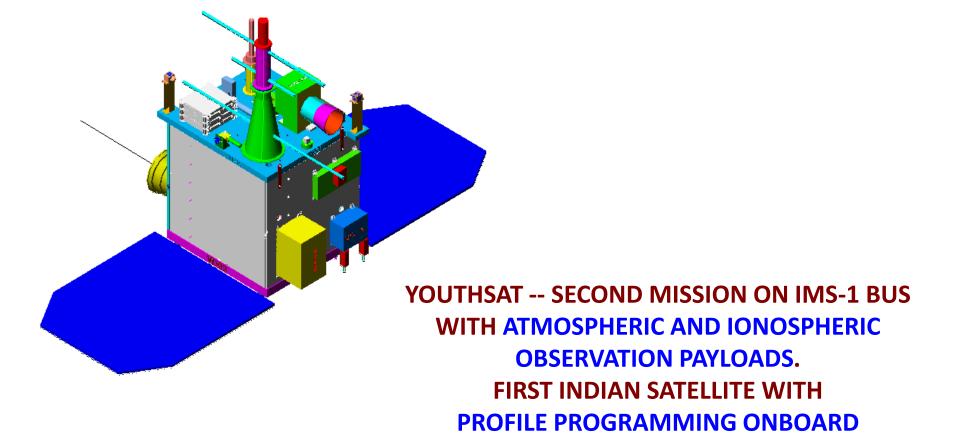
IMS-1 - IN CLEAN ROOM

IMS-1 - UNDER VIBRATION

SOLAR PANEL DEPLOYMENT TEST

SHIPPING TO SHAR

 SATELLITES NEED TO BE IN ORBIT -- OTHERWISE IT IS A LAB MODEL

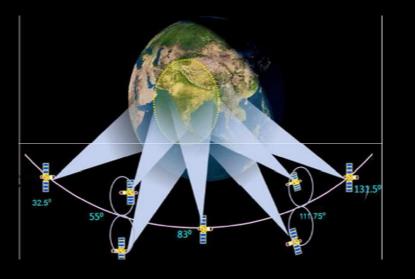


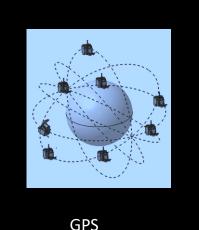
MATED WITH LAUNCH VEHIC

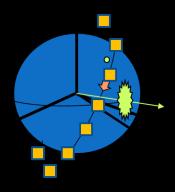
PSLV C9 LIFT OFF

FIX LAUNCHER(S) BEFORE STARTING DESIGN

 A SATELLITE BUS MEETS DIFFERENT MISSIONS WITH LEAST ADJUSTMENTS
 SATELLITE BUSSES ARE USEFUL FOR CONSTELLATIONS

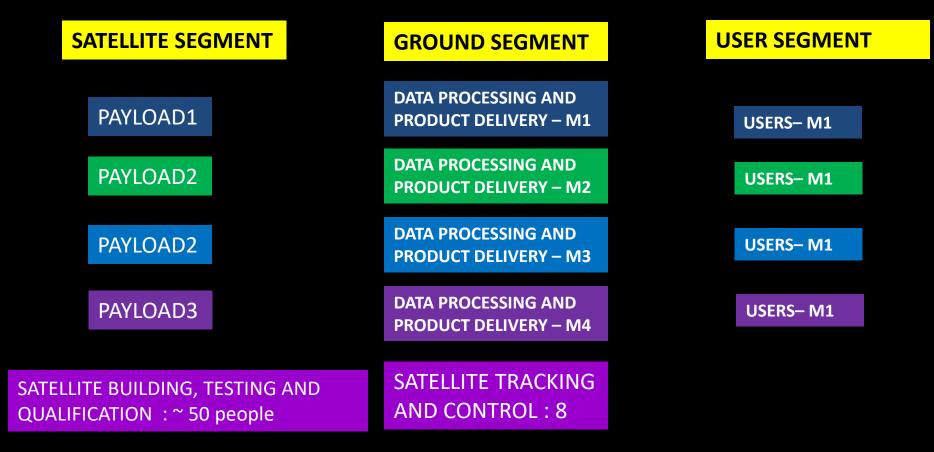

Increasing Application Demands


Application	Resolution	Bands	Repetevity
Infrastructure building / Town & Urban Planning and governance	0.5 to 1m	PAN	Daily to 1week
Agriculture Crop monitoring Crop yield estimation 	5 <mark>(1m)</mark> To 50 mtrs	VIS – NIR – SWIR (Hper spec , Microwave/SAR)	2 to 30 days
Forestry	50 (1 m) – 150 mtrs	VIS-NIR-SWIR (Hper spec , Microwave) TIR (forest fire monitoring)	Few months 1 – 5 days (Hourly)
Water resources	20 – 100 mtrs	NIR	Few months
Oceanography	100 – 1000 mtrs	VIS-NIR-TIR MW	Daily - weekly
Disaster management	< 10 mtrs	VIS-NIR <mark>SAR</mark>	Few hours


✤ EVERYWHERE ALL THE TIME MONITORING --- GREATEST DEMAND

Constellations

• A satellite CONSTELLATION MISSION is number of satellites in orbit(s) to deliver an identified task or service with supporting ground infrastructure



Remote Sensing satellites

IRNSS

SINGLE SATELLITE SYSTEM

MISSION ELEMENTS

CONSTELLATIONS ARE WITH ALL AND FOR ALL

ς

S

S

C

S

SATELLITE CONSTELLATION SYSTEMS

MISSION ELEMENTS

SATELLITE SEGMENT	GROUND SEGMEN	NT USER SEGMENT
CONST WITH PAYLOAD1 :	DATA PROCESSING ANI PRODUCT DELIVERY – I	
SAT BTQ : Pple C1 x N1	Const control : C1 x	N2
CONST WITH PAYLOAD2	DATA PROCESSING AND PRODUCT DELIVERY – I	USERS- MI1
SAT BTQ: Pple C2 x N3	Const control : C2 x	
CONST WITH PAYLOAD3	DATA PROCESSING AND PRODUCT DELIVERY – I	COERC INT
AT BTQ : Pple C3 x N5	Const control : C3 x	
CONST WITH PAYLOAD4	DATA PROCESSING AND	O USERS- M1
AT BTQ : Pple C4 x N6	PRODUCT DELIVERY – I	M4
	Const control : C4 x	N8

Redundancy aspects

	Medium / Small /Mini	Micro	Nano/Pico
Payload(s)	S	S	S
Structure	NA	NA	NA
Power	R	RL	S
ТТС	RL	R	S
Data Handling	R	R	S
AOCS	R	R	S (RH components)
Sensors	R	RL	S
Torquers	RL	S	S
Prop	RL	S	S/NA
Thermal	RL	S	S
Mechaniasms	RL	S	S
S: Single sys, R: Redundant, RL: Limited Redundancy,			

Artificial Intelligence Requirements and Oportunities in Small Satellites in constellation

- For Satellite maintenance
- Payload Operations
- Onboard data processing product delivery
- Resource sharing
- Intersatellite communications
- Contingency and survival.

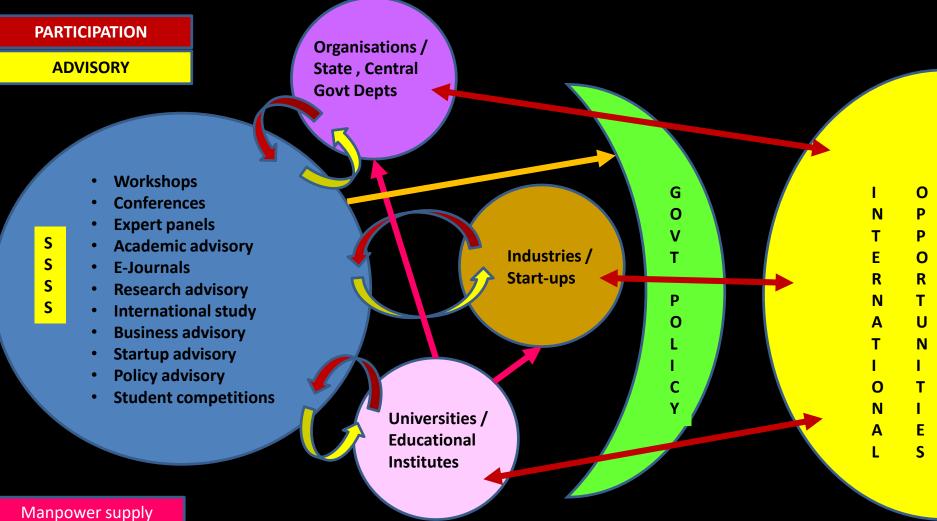
Constellations

Good points and advantages of small satellite constellations

- Constellation serves high temporal freq applications
- Participative collaborative missions
- Wide spectrum of applications
- Easier access to space for individual countries
- Capacity building in the countries
- Opening up for many research areas
- More job opportunities in all participating countries

Some of important Points to be taken care

- Quality and reliability
- More spacecraft autonomy designs
- Ready Product delivery (80%)
- Direct to mobile
- Data sharing
- Freedom within regulations
- Equal opportunities to all countries (with hand holding)
- Deorbiting rules
- Openness of purpose


SS PROVIDES CHALLENGES AND OPPORTUNITIES TO STUDENTS UPROARD

ISAC TFD

ISAC TED

ISAC TFD

CAPACITY BUILDING IN INDIA

ICSS2019.IN

SMALL SATELLITES CONCLUSION

- ✤ SMALL SATELLITES : MINIATURISATION WITH A MEANING
- FAILURES ARE POSITIVE FEEDBACK LEARN AND CORRECT (ALL BIG SPACE ORGANISATIONS FOLLOWED THIS PATH)
- SOOD DOCUMENTATION IS ESSENTIAL IT SHOWS WHERE TO CORRECT
- ***** MISSION GOAL DEFINES SYSTEM
- ✤ GOAL CAN BE SOCIETAL APPLICATION, TECHNOLOGY DEVELOPMENT OR KNOWLEDGE EXPANSION
- ***** SYSTEMS ENGG IS THE PROCESS TO MAKE THE SYSTEM
- ***** NEVER LOSE SIGHT OF THE GOAL
- DESIGN STURDY TO MEET SURVIVAL REQ
- DESIGN AS A BUS WITH MODULARITY, ACESSABILITY AND ADOPTABILITY
- ✤ SIMPLICITY IS BEST ENG
- ✤ RELIABILITY IS RESPECTED AND IT PROTECTS GOAL

SMALL SATELLITES -- CONCLUSION (Con

- ✤ STANDARDISATION WITH SCALING
- SS TECHNOLOGIES : GREAT CHALLENGES AND RESEARCH OPPORTUNITIES
- ✤ NANO SATS ENTERING OPERATIONAL AREA: REQUIRES STRONG QUALITY ASSURANCE
- * AVOIDING TESTS ENSURES RISK
- ✤ GO AHEAD AGAINST ODDS THESE ARE NATURAL FOR INVENTIONS
- ✤ FIX LAUNCHER(S) BEFORE STARTING DESIGN
- ✤ A SATELLITE BUS MEETS DIFFERENT MISSIONS WITH LEAST ADJUSTMENTS
- *** SATELLITE BUSSES** ARE USEFUL FOR CONSTELLATIONS
- ***** SS PROVIDES CHALLENGES AND OPPORTUNITIES TO STUDENTS
- EXPERIENCE GIVES BOOKS BOOKS DON'T GIVE EXPERIENCE --EXPERIENCE IS THE REAL KNOWLEDGE
- ✤ COLLBARATIONS ARE A MUST FOR CONSTELLATIONS

STELLITE CONSTELLATIONS : WITH ALL AND FOR ALL WORLD IS NO MORE GLOBAL VILLAGE IT IS A GLOBAL ROOM

THANKS TO UNOOSA FOR THE OPPORTUNITY THANKS TO ALL OF YOU FOR GREAT PRESENCE THANKS TO ORGANISERS

THANKS FOR ATTENTION

I ACKNOWLEDGE ISRO AND THE YOUNG TEAMS FOR THEIR SUPPORT IN CREATING SMALL SATELLITE BUSSES AND MISSIONS I ACKNOWLEDGE THE VELTECH UNIVERSITY FOR ENCOURAGING AND SUPPORTING THE CAUSE OF SMALL SATELLITES I ACKNOWLEDGE SSSS EC AND MEMBERS FOR THEIR ENCOURAGEMENT I LOVINGLY ACKNOWLEDGE MY WIFE Dr RAMAVANI AND CHILDREN FOR GREAT SUPPORT IN MY LIFE AND CAREER

1211 Symposium on Basic Space Techn

BRAZE 9-14

it's with Small Satellite Space Mis-

Raghava Murthy V A Dantu raghavdva2@gmail.com