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Abstract

• We present an over view of the Hamiltonian of the N-Body problem 
with some special cases (two- and three-body problems) in view of 
classical mechanics and General Theory of Relativity. Several 
applicational models of orbital motions are discussed extensively up 
to High eccentric problems (Barker’s equation, parabolic 
eccentricity…etc.) by using several mathematical techniques with high 
accurate computations and perturbation such as: Lagrange’s problem, 
Bessel functions, Gauss method…..etc. 

• As an example; we will give an overview  of the satellite the position 
and velocity components of the Jordan first CubeSat: JY-SAT which 
was launched by SpaceX Falcon 9 in December 3, 2018.



N-Body Problem



N-Body Problem with weak gravitational 
interactions without Dark Matter (galactic 

dynamics)



• Solving N-Body Problem is an important to understand the motions of 
the solar system ( Sun, Moon, planets), and visible stars, as well as 
understanding the dynamics of globular cluster star systems 





Weak Gravitational Interactions

• The Lagrangain for the N-Body system for the weak gravitational 
interactions  can be written as: (Newtonian Dynamics Limit)

• Where is 𝑞𝑖 is the generalized coordinates, 
ሶ𝑞𝑖 is related to generalized momenta, and ℒ is the Lagrangian of the 

N-Body system.
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• Using the principle of least action, the above equation can be written 
in terms of Euler-Lagrange equations: 3N nonlinear differential 
equations as:
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General Relativity orbits
(strong gravitational interactions)

The two-body problem in general relativity is the determination of the 
motion and gravitational field of two bodies as described by the field 
equations of general relativity EFEs.

• bending of light by gravity,

• the motion of a planet orbiting its sun,

• he motion of binary stars around each other,

• and estimate their gradual loss of energy through gravitational 
radiation,

• that tidal forces.



General three-Body Problem
(Newton to Poincare´)

• In the three-body problem, three bodies move in space under their 
mutual gravitational interactions as described by Newton’s theory of 
gravity. Solutions of this problem require that future and past motions 
of the bodies be uniquely determined based solely on their present 
positions and velocities. In general, the motions of the bodies take 
place in three dimensions (3D), and there are no restrictions on their 
masses nor on the initial conditions. Thus, we refer to this as the 
general three-body problem.





Sun-Earth-Moon System







Two Body Problem



• The two body problem involves a pair of particles with masses m1 
and m2 described by a Lagrangian of the form

• Relative motion (CM)



Two Body Problem
Kepler’s Equation

One of the problems in the celestial mechanics is the solution of 
Kepler’s equation (KE), the literature of solving this equation is an 
extensive, and widely studied over three centuries, from Newtron’s days 
up to now ( Colwell 1993).



Geometric Representation

• Where

• E is the Eccentric anomaly

• θ is the True anomaly

• b is the seminar axes

• a is the semimajor axes

• r is the radial position 



• The universal form of Kepler’s equation (UKE) can be written as:

• where μ is the gravitational constant, R_0 and V_o are the position 
and velocity at t=0, α=1/a (semimajor axis), e eccentricity, and C(x) 
and S(x) are defined as 



Kepler’s Equation

• Where M is the mean anomaly (related to time parameter). e is the 
eccentricity, and E is the eccentric anomaly, in general M and e are known 
and E is to be calculated.

• M=(t-T)(2Pi/P) (T the time of perihelion passage)
• Radius vector r
• True anomaly v



Bessel’s  function Solution of KE

• Where J_k is the Bessel function of the first kind



An Iterative Mothed 

• Which is good approximation for small e



Newton’s Iteration Function 





Laguerre's Iterative Function

• The laguerre’s iterative function (Conway 1986, Danby 1992) can be 
written as:

• Where



Laguerre's Iterative Function

• For a simple iteration of E0=M= 0.09424777960769381 it will be converge 
to 0.8298940924910203 after 97 iterations.

• And for E0=M= 0.09424777960769 , it will be converge 
0.8298940924910086 after 97 iterations

• Here we use Laguerre’s method iteration up to 16th decimal places. For 
E0=M= 0.09424777960769381, it is shown that the convergence in 4 
iterations.

• For E0=M=0.09424777960769, it is shown that the convergence in 4 
iterations.

• Reference
• A. Sakaji, Electronic Journal of Theoretical Physics, 1, 15-29, 2004 





• we see that Laguerre’s method is repaid convergent, it takes 4 
iterations, but Newton’s method takes 15 to 18 iterations.



The extreme example e=0.999999999 and M=0.00000001, by 
Laguerre’s method we have , 



• And for e=0.9 amd M=1 radian, Charles and Tatum (1998) showed the 
subsequent iterations and convergence to 1.862086686874532 after 
20 iterations. Let us try this again by Laguerre’s method (3 iterations).



















• Jordan’s Crown Prince Al Hussein bin Abdullah II announced on 
Monday, December 3, the launch of the first Jordanian satellite into 
space, as part of the Masar initiative by the Crown Prince Foundation.

• “The first Jordanian cube satellite, JY1, was launched from California 
into space today. A great achievement and a major first step in 
satellite engineering for the youth of Jordan.”



• JY1 was built by several Jordanian students, academics and consultants, 
who explored satellite engineering and related knowledge, and developed 
their skills in aviation and space science through an intensive program over 
a period of 10 weeks, under the supervision of NASA experts.

• The satellite aims to carry out research and academic tasks, as well as take 
and publish promotional pictures of Jordan’s historical and folkloric sites.

• The nano cube satellite will fly over Jordan and take SSTV images and 
various data of the Kingdom, and the information it releases will be 
available to everyone via two platforms: a mobile application for amateur 
use, and a more advanced desktop software.



Two-line element set of Jordan cube satellite 
(JY1SAT)

A two-line element set (TLE) is a data format encoding a list of orbital elements of an Earth-orbiting object for a given point in 
time, the epoch of JY1SAT, Using Kepler’s equation with some corrections (perturbations models), the state (position and 
velocity) at any point in the past or future can be estimated to some accuracy

• JY1-SAT has been given the NORAD ID 43803 and it has the following TLEs (Source of the Keplerian elements: AFSPC)  :

• 1. 43803U 18099AX  19035.19214779  .00000222  00000-0  25484-4 0  9996

• 2. 43803  97.7578 108.7107 0016371  60.9685 299.3174 14.95165049  9322

• NORAD ID: 43803  

• Int'l Code: 2018-099AX  

• Perigee: 579.3 km  

• Apogee: 598.5 km  

• Inclination: 97.8 °

• Period: 96.3 minutes  

• Semi major axis: 6959 km  

• Launch date: December 3, 2018 



JY1SAT: Azimuth and Elevation angle 
(visible above Amman: Good to Excellent)

Start Max Altitude End

Date, Local time AZ Local time Az El Local time Az

29-Mar 22:10 SSE 155 22:17 ENE 73 50 22:23 N 356

30-Mar 22:16 SSE 159 22:22 E 81 59 22:28 N 354

31-Mar 22:21 SSE162 22:27 E 78 70 22:34 N 352

1–Apr 22:27 S 165 22:33 ENE 63 83 22:39 N 350



All Passes above Amman 



March 23, 16:20:49 

• NORAD ID:43803

• LOCAL TIME:16:20:49

• LATITUDE:49.09

• LONGITUDE:-51.41

• ALTITUDE [km]:595.45

• SPEED [km/s]:7.56=27,216km/h

• AZIMUTH:313.7NW

• ELEVATION:-28.4

• RIGHT ASCENSION:19h 31m 51s

• DECLINATION:15° 16' 30''

• Local Sidereal Time:04h 47m 45s

• The satellite is in day light

• SATELLITE PERIOD:97 min



March 26, 08:30:53 

• NORAD ID:43803

• LOCAL TIME:08:30:53

• LATITUDE:65.85

• LONGITUDE:-74.66

• ALTITUDE [km]:600.05

• SPEED [km/s]:7.56=27,216km/h

• AZIMUTH:23 NNE

• ELEVATION:-13.7

• RIGHT ASCENSION:07h 09m 56s

• DECLINATION:39° 18’ 57''

• Local Sidereal Time:21h 08m 21s

• The satellite is in day light

• SATELLITE PERIOD:97 min
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