

Bureau of Meteorology

Monitoring and mitigating space weather effects for GNSS applications

Balwinder Arora¹, Michael Terkildsen¹, German Olivares²

¹ Space Weather Services – Australian Bureau of Meteorology ²Spire Global Inc

Overview

Bureau of Meteorology

Australian Government

- Introduction to the Space Weather Services provided at the Bureau of Meteorology
- Space weather impact on precise positioning
- Introduction to PPP-RTK / National Positioning Infrastructure (NPI)
- 3D Tomographic Ionospheric Model
- Model performance / Validation (quiet conditions)
- September 2017 storm
- Comparative PPP-RTK performance through storm conditions
- Summary

Bureau of Meteorology

Australian Bureau of Meteorology Space Weather Services

www.sws.bom.gov.au

- Originally Ionospheric Prediction Service (IPS) 1947-2008.
- 2008 Renamed "Space Weather Services" (SWS) section within Bureau of Meteorology Hazards Prediction Branch.
- Contact details changed office@ips.gov.au → sws_office@bom.gov.au
- Australian Space Forecast Centre (ASFC) team consists of
 - 4 Senior Space Weather Forecasters (SSWF's).
 - 7 Space Weather Forecasters (SWF's)
 - Weekly rotation cycle
- Move to 24/7 forecast centre coverage for significant events.

Australian Government Bureau of Meteorology

1. SWS Overview: Space Weather Network Sensors and Locations

Bureau of Meteorology

1. SWS overview: Online Products **Crc**•siv and Services

Precise positioning and space weather

Australian Government Bureau of Meteorology

Space weather impacts vary by system:

Single-frequency positioning: Impacted by absolute ionospheric delay

Single frequency positioning utilising broadcast model: impacted by deviation of Klobuchar model from the true ionosphere.

Differential / augmented positioning: Most significantly impacted by spatial gradients in the ionosphere

Network RTK: Impacted by non-linear gradients and ionospheric variability with small spatial scales

Positioning using <u>pseudorange</u> \rightarrow ionospheric error directly impacts positioning algorithm

Positioning using <u>carrier phase</u> \rightarrow ionospheric error impacts ambiguity resolution / positioning

National Positioning Infrastructure

Bureau of Meteorology

"Instantaneous, reliable and fit-for-purpose access to positioning and timing information anytime and anywhere across the Australian landscape and its maritime jurisdictions"

Bureau of Meteorology

3D Tomographic ionospheric model: 3DB-tomion

Figure from M. Hernandez-Pajares, J.M. Juan, J. Sanz, O.L. Colombo, Improving the real-time ionospheric determination from GPS sites at very long distances over the equator, J Geo Res, V. 107, No A10, 1296, doi:10.1029/2001JA009203, (2002).

- $c_{ijk}(t)$: Basis function coefficient
- *I*, *J*, *K*: Number of basis functions in each dimension.

- No thin-shell approach, thus reducing miss-modelling.
- TEC is computed by integration of N_e.
- Receiver and satellites DCBs do not depend on geometry, whereas STEC does → geometrically decorrelated from STEC.

Bureau of Meteorology

Ionospheric sounding network

- Reference Network (21 GPS receivers; red dots)
- Test sites (28 rovers; yellow dots).

Bureau of Meteorology

How accurate is the 3D B-splines ionospheric model?

Ionospheric model performance

Bureau of Meteorology

Australian Government

Post-fit residuals

• Compares the raw input data with the modelled output

Highly accurate model

- RMS ranges from **0.02 to 0.07 TECu**.
- No geographical trend due to the local-support feature of B-splines.

Ionospheric model performance

Bureau of Meteorology

Australian Government

3D ionospheric model? Why bother?

- RMS for 2D model is ~100 times higher than for 3D models.
- 2D residual RMS is at TECu level (1 TECu ~ 0.1 m) → Cannot support positioning techniques to achieve RMS at cm level in real-time.
- 3D residual RMS is at 10⁻² TECu level (i.e ~ mm) → It might support positioning techniques to achieve RMS at cm level in real -time.

Bureau of Meteorology

By how much does the model improve positioning performance?

Ionospheric Model Test Bed

Australian Government

Bureau of Meteorology

Ultimate validation tool \rightarrow How well does the model improve GNSS positioning?

Ionospheric Model Test Bed

Bureau of Meteorology

Performance Metrics:

- Time To Fix Ambiguity (TTFA)
 - Time required to resolve each ambiguity to integer
 - Impacted significantly by the accuracy of the ionospheric model
- Time To Fix Position (TTFP)
 - Time required for a user to reach a positioning accuracy better than 10cm
- TTFA / TTFP analysed across all sites
- Results analysed in terms of Cumulative Distribution Functions (CDFs) of TTFA and TTFP

Bureau of Meteorology

Results – Quiet Conditions Time to Fix Ambiguity (TTFA)

crc•si

- Closed loop: Observed STEC at reference sites used as ionospheric corrections in fictitious rover located at reference sites → <u>Baseline network performance</u>
- Ionospheric hybrid model: 3D B-splines ionospheric model with interpolation to rover sites
- Float solution: No ionospheric correction provided to rovers.

Bureau of Meteorology

Results – Quiet Conditions Time to Fix Position (TTFP)

Cumulative Distribution Function

1. Closed-loop:

- H: Uncertainty for 90% of computed positions is below 10cm in less than 10 epochs.
- V: Uncertainty for 90% of computed positions are below 10cm in less than 40 epochs.

2. Hybrid model:

- H: Uncertainty for 90% of computed positions are below 10cm in less than 20 epochs.
- V: Uncertainty for 90% of computed positions are below 10cm in less than 50 epochs.

Bureau of Meteorology

What happens during an ionospheric storm?

September 2017 Space Weather Event

Australian Government

Geomagnetic Storms (08 Sep 2017)

Impact on Precise GNSS??

Results Ionospheric Storm STECs

Bureau of Meteorology

Australian Government

Bureau of Meteorology

PPP-RTK performance Quiet versus Storm (CDFs)

* Availability defined as the % of locations achieving horizontal positioning better than 10cm accuracy within

Bureau of Meteorology

The previous CDFs showed averaged performance over a day...

How does the time evolution of the storm impact the positioning application?

Can the temporal variation in positioning performance help identify an appropriate proxy for space weather impact to GNSS?

Bureau of Meteorology

Results Time evolution of CDF summary measure (90th percentile TTFP)

Both storm periods (dayside and nightside) degrade positioning performance

crc•si

Lagged response to the geomagnetic disturbance by ~2hrs

Well correlated with the large scale ionospheric disturbance during the day (summarised by foF2).

Nightside event appears to be related to a topside disturbance (not seen by ionosonde)

crc•si)

Summary

Australian Government

Bureau of Meteorology

- Quiet conditions: 3D lonospheric model corrections → TTFA and TTFP similar to closed-loop (baseline/network performance) with >80% availability (of positioning to <10cm within 10 epochs) across the network in the horizontal component.
- Storm conditions: 3D Ionospheric model corrections → TTFF increases across the network around 2 hours after the geomagnetic storm at day time (~03:00-04:00 UT).
- Correlation and delay between DsT and Ambiguity Success Rate.
- No clear correlation between DsT and STEC, TTFF.
- Influence of the plasmasphere on the PPP-RTK platform → lower Ambiguity Success Rate at local night time (~16:00-17:00 UT).

Bureau of Meteorology

Thank you! Questions?

michael.terkildsen@bom.gov.au