Satellite Flood Monitoring

Radars on Sentinel-1 satellites for fully-automatic flood monitoring

Bernhard Bauer-Marschallinger
https://www.geo.tuwien.ac.at/
bbm@geo.tuwien.ac.at
Flood disasters

- Floods are the most frequent and costliest natural disasters worldwide.
- Losses & damages will increase
 - climate change will increase flood frequency
- Vulnerability towards floods will increase
 - urbanisation & population growth
 - land cover change
 - inadequate infrastructure

United Nations Office for Disaster Risk Reduction (UNISDR)…

Numbers of disasters per type 1998-2017

Source: CRED, UNISDR, 2018

→ need for global, fast, and accurate mapping of flood extents!
 brings help for…
 - affected people
 - emergency units
 - authorities
 - prevention planers

www.preventionweb.net/knowledgebase/disaster-statistics
Europe’s Sentinel-1 radar satellite mission

- Synthetic Aperture Radar (SAR)
 - 5.4 GHz microwaves
 - 2 Satellites in orbit
 - since 2014/16

- SAR is used for
 - topography, vegetation, soil moisture, water bodies
 - independent from weather, clouds, and daylight

- High-resolution radar imagery
 - 20m ground pixels
 - good „revisit time“
 - 1.5-4 days over Europe
 - 3-12 days global
 - → high data volume!
 - ~1TB per day

- Sentinel-1 is the first SAR mission capable of systematic & fully-automatic monitoring of floods
SAR data!

- SAR imagery allow a different view on Earth’s surface
- signal is built from the radar backscatter
 = the microwave echo received at the satellite sensor
- governed by the surface geometry and dielectric properties
 - local soil “roughness”
 - wetness
 - vegetation structure
 - …
SAR flood mapping principle

- Calm, open water reflects radar pulses mostly in the forward direction, i.e. away from the satellite sensor
- → "dark" backscatter in the SAR images
- thresholding can map water surfaces
- difference to previous conditions → maps the flooded areas
Flood in Simbach/GER | 2016 June 1

Flood in Simbach/GER | 2016 June 1

- Sentinel-1 image of Simbach (Germany) and Braunau (Austria)
 - at the banks of the river “Inn”
 - acquired on 3.6.2016
Flood in Simbach/GER | 2016 June 1

- Flooded areas left on 3.6.2016
 - through application of -17dB as threshold to the Sentinel-1 backscatter image

- BUT: caveats of simple thresholding…
 - False negatives due to high backscatter over inundated areas
 - rough water surface (wind!)
 - vegetation over water
 - False negatives over non-sensitive areas
 - dense vegetation
 - double bounces in urban areas
 - False positives over other low backscatter areas
 - dry grasslands
 - smooth fields
 - asphalt
 - radar shadow

- → mask and uncertainty layers required!
Satellite datacubes for flood monitoring

- A datacube comprises co-formatted spatial data and provide also access via the time axis

- Advantages
 - Users get both real-time and historic data
 - "Permanent" water reference layers are available
 - Flood mapping algorithm can be calibrated
 - E.g. through advanced change detection & machine learning
 - Uncertainty can be specified
 - Exclusion areas can be derived
 - → known unknowns

- Disadvantages
 - Petabyte-scale storage needed
 - High performance computing needed for re-analysis
 - Complex hard-/software

Progression of the November 2019 flooding along the river Drau near Weißenstein in Carinthia, Austria, for the period 15 to 23 November 2019, as captured by Sentinel-1
Copernicus: Automated Global Flood Monitoring (AGFM)

- EU Commission / JRC will setup a new flood monitoring component
 - within the Copernicus Emergency Management Service (CEMS)

- Expert Group in 2020: JRC Feasibility Study for SAR flood mapping
 - identified scientific challenges
 - identified user requirements
 - proposed the monitoring service layout, using datacube architecture
 - 20m p-flood mapping
 - global and systematic coverage
 - fast automatic production & good "timeliness"
 - 8-12h after sensing
 - exclusion layer
 - product uncertainty
 - advisory flags

- in 2021: phasing-in of the AGFM
Simbach flood – as from datacube approach

- Synthetic reference image based on Sentinel-1 Data Cube analysis (mean backscatter for the year 2016)
Simbach flood – as from datacube approach

- Uncertainly for water/no-water classes as derived from Sentinel-1 image acquired on 3.6.2016
Simbach flood – as from datacube approach

- Exclusion layers for Sentinel-1 flood product
Simbach flood – as from datacube approach

- Sentinel-1 flood map of Simbach on 3.6.2016 with exclusion layer
Conclusions

- Satellite observations provide “bird’s eye” information on flood situations
- Optical sensors are often impeded by bad weather or clouds
- Radar sensors, and especially the operational Sentinel-1 SAR mission, allow monitoring of global water and flood surfaces
 - Multiyear datacubes enable masking and uncertainty info through enhanced analysis
- EU Commission-JRC / Copernicus will setup an Automated Global Flood Monitoring (AGFM)
 - Based on high performance computing applied on a Sentinel-1 datacube
 - 20m flood mapping
 - Global and systematic coverage
 - Fast automatic production & good “timeliness”
 - 8-12h after sensing
 - Exclusion layer
 - Product uncertainty
 - Advisory flags
- Copernicus CEMS: https://emergency.copernicus.eu/

Acknowledgements

- The analysis of Sentinel-1 data over Simbach and Queensland was carried out by Florian Roth, TU Wien
- The ACube4Floods project is funded by the Austrian FFG
- The EC JRC Expert Group