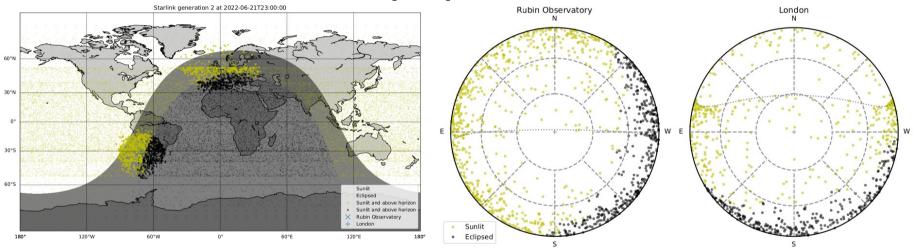


La Palma, Canary Islands, Spain 3 - 7. October, 2021

Analytical simulations of the effect of satellite constellations on astronomical observations

Cees Bassa (ASTRON), Olivier Hainaut (ESO) & David Galadí-Enríquez (Calar Alto)

Based on https://arXiv.org/abs/2108.12335


5 October 2021 | Bassa (ASTRON) | Analytical simulations

Implementing the recommendations

La Palma, Canary Islands, Spain 3 - 7, October, 2021

Discrete simulations of all-sky impact

- Constellation/satellite properties
- Observatory latitude

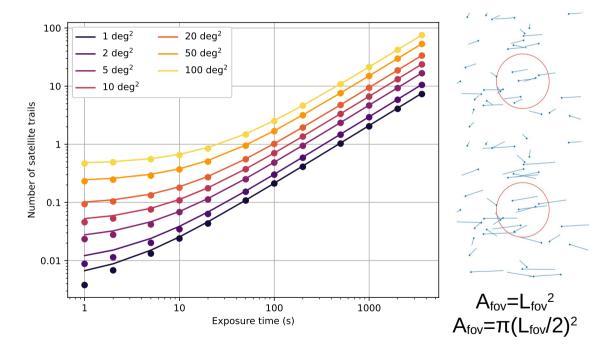
- Solar declination (time of year)
- Solar elevation (time of day)

See McDowell (2020), Hainaut & Williams (2020), Lawler et al. (2021)

5 October 2021 | Bassa (ASTRON) | Analytical simulations

Implementing the recommendations

3 - 7, October, 2021

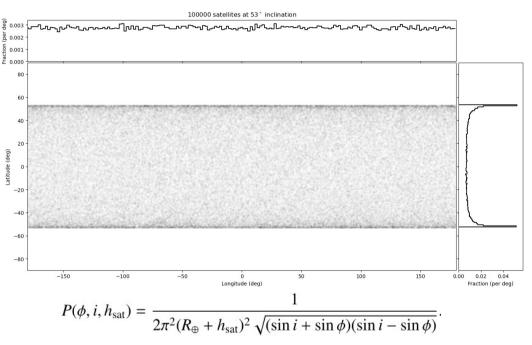

Discrete simulations of observational impact

Count trails per exposure:

- Exposure time (t_{exp})
- Field-of-view (A_{fov} and L_{fov})
- Satellite density (ρ_{sat})
- Angular velocity (ω_{sat})

$$N_{\text{trail}} = \rho_{\text{sat}}(A_{\text{fov}} + L_{\text{fov}}\omega_{\text{sat}}t_{\text{exp}})$$

Average over many discrete constellation realizations (slow for 65000 satellites!)



Implementing the recommendations

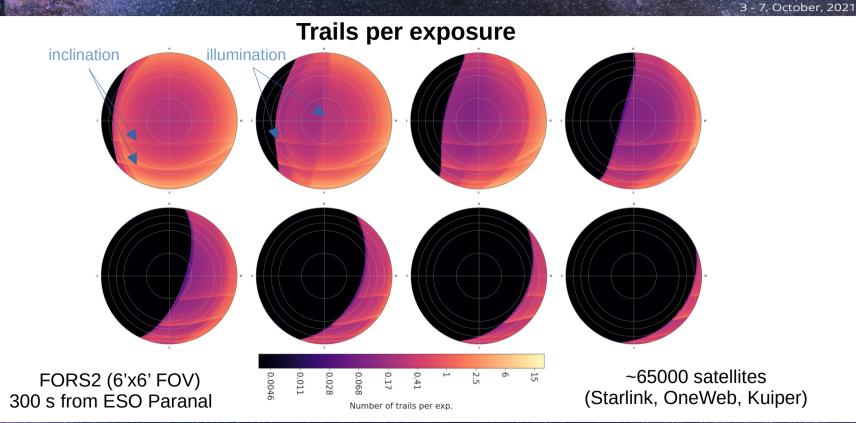
La Palma, Canary Islands, Spain 3 - 7. October, 2021

Analytical simulations of observational impact

Satellite density is uniform with longitude but strongly peaked with latitude (arcsine distribution)

Use analytical probability density to define orbital shell density (n_{sat}/km²)

Transform to sky density ρ_{sat} (n_{sat} /deg²) for sight line at distance d, impact angle α , field-of-view A, and N_{sat} objects in orbital shell


$$\rho_{\rm sat} = N_{\rm sat} P(\phi, i, h_{\rm sat}) \frac{d^2 A}{\cos \alpha}$$

Applicable to fully populated shells

Implementing the recommendations

La Palma, Canary Islands, Spain

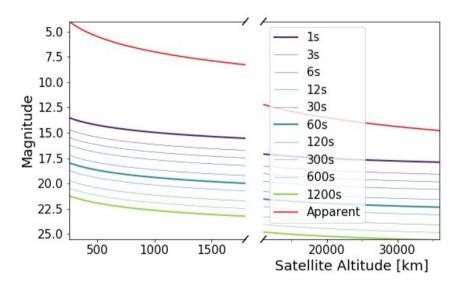
Implementing the recommendations

La Palma, Canary Islands, Spain

3 - 7, October, 2021

Simple photometric modelling

• Apparent magnitude:


 $m_{\text{sat}} = m_{1000\text{km}} + 5\log_{10}(d_{\text{sat}}/1000) + kd_{\text{sat}}/h_{\text{sat}}$

Depends on distance d_{sat} , altitude h_{sat} and extinction k (m_{1000km} ~7 for Starlink and OneWeb)

• Effective magnitude:

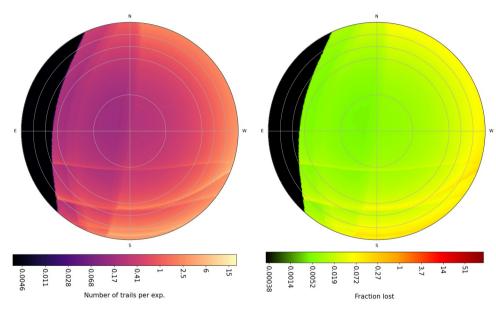
$$m_{\rm eff} = m_{\rm sat} - 2.5 \log_{10} \frac{t_{\rm eff}}{t_{\rm exP}} = m_{\rm sat} - 2.5 \log_{10} \frac{r}{\omega_{\rm sat} t_{\rm exp}}$$

Depends on instrument resolution r, exposure time t_{exp} and angular velocity ω_{sat}

See afternoon talk by Olivier Hainaut!

Implementing the recommendations

La Palma, Canary Islands, Spain 3 - 7, October, 2021

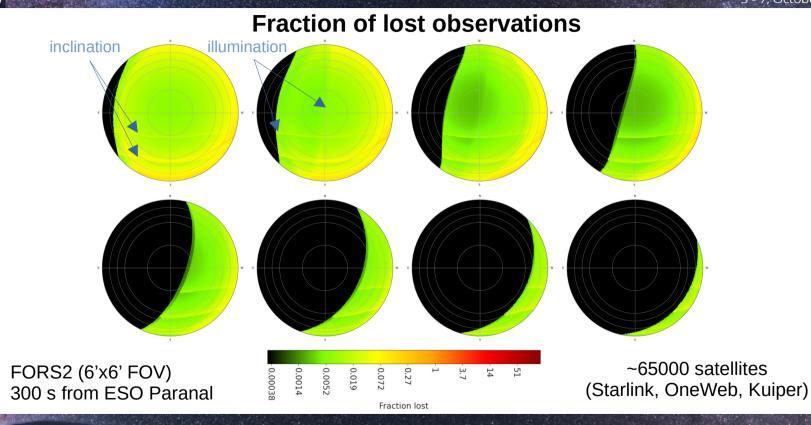

Effect on observations

Definition:

- $m_{eff} < 1\sigma$ detection limit: no effect
- otherwise, area of 5 arcsec wide trail lost from detector or slit
- if m_{eff} > heavy saturation limit, entire observation lost

Check of all orbital shells, all constellations.

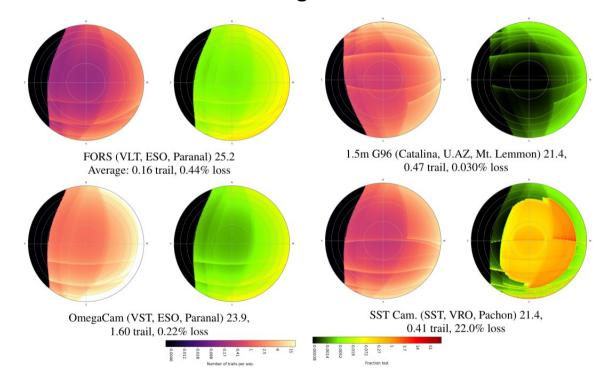
Fraction lost is the fraction of observations or pixels in observation lost due to satellite trails


FORS2 (6'x6' FOV) 300 s from ESO Paranal

~65000 satellites (Starlink, OneWeb, Kuiper)

Implementing the recommendations

La Palma, Canary Islands, Spain 3 - 7, October, 2021

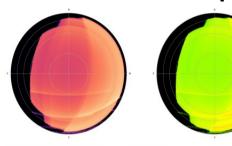


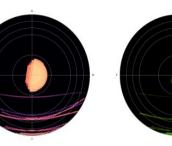
Implementing the recommendations.

La Palma, Canary Islands, Spain

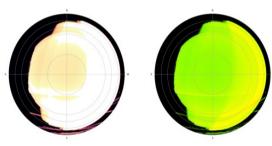
3 - 7, October, 2021

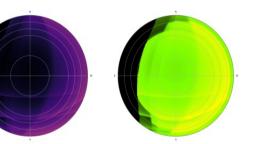
Imagers




Implementing the recommendations

La Palma, Canary Islands, Spain 3 - 7, October, 2021


Spectrographs


FORS (VLT, ESO, Paranal) 25.2 Average: 0.64 trail, 8.8% loss

4MOST-HiRes (VISTA, ESO, Paranal), 0.33 trail, 0.018% loss

4MOST-LowRes (VISTA, ESO, Paranal), 14.7 trails, 0.78% loss

HARMONI (ELT, ESO, Armazones), 0.007 trail, 0.70% loss

Summary

- Derived analytical expressions to assess observational impact
- Analytical simulations allow for fast computation of observational impact for an observatory and satellite constellation(s)
- Impact on sky brightness: see afternoon talk by Olivier Hainaut
- Satellite trails will impact all observatories (both imagers and spectrographs)
- High sensitivity, large field-of-view instruments and/or long exposures are worst affected

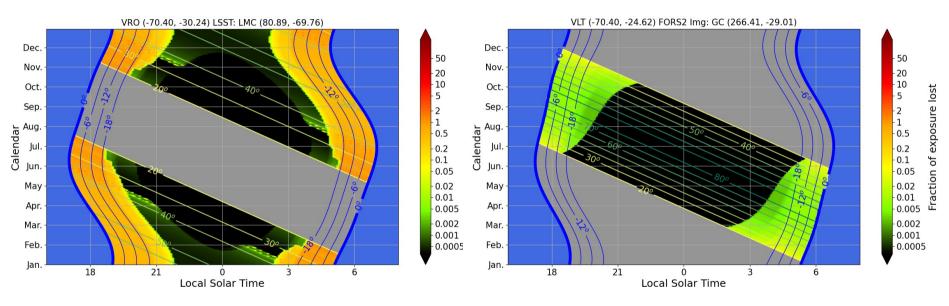
Further information

- Paper: arxiv.org/abs/2108.12335 (A&A under review)
- Online simulator: www.eso.org/~ohainaut/satellites/simulators.html
- Github repository: github.com/cbassa/satconsim

La Palma, Canary Islands, Spain

- 7. October, 2021

Thank you for your attention!



Implementing the recommendations

La Palma, Canary Islands, Spain

3 - 7, October, 2021

Impact on observability of specific sources

