

Resources Optimization by Homogenization of Agricultural Fields

Gordana Đuraš

UN/Austria Symposium "Space Applications for Food Systems" 7-9 September 2021

Current Agricultural Situation

- Optimization of resources due to constantly growing population, sustainability and environmental protection
- Management: soil conditions within the fields are not taken into account
 - \rightarrow over-fertilization or undersupply
- Sowing seeds: at proper distances and depth, but selected quantity uniformly for the entire field
 - \rightarrow affect plant development and yield
- Soil samples: taken at 25 different field points, obtained information is averaged and standardized for the entire field
 - \rightarrow high loss of information

JOANNEUM RESEARCH POLICIES

Aims and Objectives

Optimization of resources

4

- Exact knowledge of the soil characteristics needed
- Differences between and within fields have to be identified

Characterization of soil differences

- Identification of homogeneous field areas (clusters)
 based on georeferenced soil sensor data
- Identification of representative points
 - Basis for additional soil samples
 - \rightarrow analysis in labor

Diverse Soil Types

How to Split a Field Into Homogeneous Areas?

Homogenized Field 80 -**Representative Point** 60 -• Field Zones ID-Latitude Zone1 ? Zone2 Zone3 Zone4 20-Zone5 Zone6 0 -60 20 80 0 40 **ID-Longitude**

Prerequisites for Zoning

- Extensive data base
 - Georeferenced data matrix, point related to geografical location (longitude, latitude, altitude)
- Collection of divers soil parameters
 - Data should describe soil characteristics
- Technologies for data generation
 - Diverse sensor technologies
 - Satellite information
 - Results from chemical analysis of soil data
 - Drone-collected data
- Statistical methods to extract relevant information from recorded data

Soil sensor generates thousands of georeferenced data records per field

Data Recording by Veris Soil Sensor

RTK GPS permanent measurements

electrical conductivity

- 0 – 30 cm

7

- 0 – 90 cm

permanent measurement

Infrared and red-radiation every second measurement

pH measurements every 20m

Fotocredit: Maschinenring Steiermark

Data Recording on a Field

Step 2: drive inside the field, distances

Data Preparation

1. Plausibility check to eliminate non-positive values and outliers

- 2. Data discretization on 6mx6m grid to ensure data completeness
- 3. Data aggregation (by mean calculation) in order to get one value per cell

Spatial Interpolation

- Prerequisite for identification of homogeneous areas
 - Prediction of missing values (empty cells) in order to get complete data
 - Model of choice: Generalized Additive Model (GAM)

Data Smoothing

Smoothing of all values by GAM proved to be more beneficial

Identification of Homogeneous Field Areas

- Application of cluster analysis
 - Approach that groups a set of objects similar to each other in the same clusters
 - Objects within the same cluster are dissimilar to the objects in other clusters
 - Number of clusters n must be specified in advance
- Hierarchical clustering performed in statistical software R
 - hclust(d, method), where d denotes the Euclidean distance (dissimilarity measure)
- Cluster analysis is based on m explanatory variables
 - Our case (m = 2): soil conductivity parameters (in 30cm and 90cm depth)

Identification of Representative Points

Zone1

Zone2 Zone3

Zone4

Zone6

13

1. Determination of overall-mean for each explanatory variable and cluster

 \rightarrow for m=2, n=6: Zone1(\bar{x}_1, \bar{x}_2),..., Zone6(\bar{x}_1, \bar{x}_2)

2. Computation of the Euclidian distance between overall-mean and cell values (x_1, x_2) of the respective cluster

$$d_l = \sqrt{(\bar{x}_1 - x_1)^2 + (\bar{x}_2 - x_2)^2}$$
 for $l = 1, ..., 6$

3. For each cluster the selection of the cell with minimum d_1

 \rightarrow Representative point

Fotocredit: Maschinenring Steiermark

Methodology Advantages

Obtained zone information basis for determination of sowing quantities and application maps Homogenized Field

- Optimal points for additional soil data collection and analysis in labor
- \rightarrow Data are characteristic for the entire zone, not only one point
- Zone information and results from chemical analysis basis for statistical modeling of crop, manuring and irrigation
 - Applicability does not depend on the farm size and shape of a field

Resources Optimization Diagram

Future Work

- Data fusion: Inclusion of remote sensing data into the existing database
 - Diverse vegetation indices as further explanatory variables
 - To what extent the zoning of homogeneous areas with similar growth conditions can be improved
- Consideration of seasonal and year-specific effects
- Consideration of weather conditions

Thank You For Your Attention!

Fotocredit: Maschinenring Steiermark

Partners

Data Recording & Sampling on Representive Points by

Maschinenring Steiermark Nährstoffmanagement

agrar-Zt

JOANNEUM RESEARCH

Statistical Analysis, Database Building and Development of a Shiny-App by