

High Precision Pulsar Timing as a Probe of Solar Wind and Energetic Phenomena

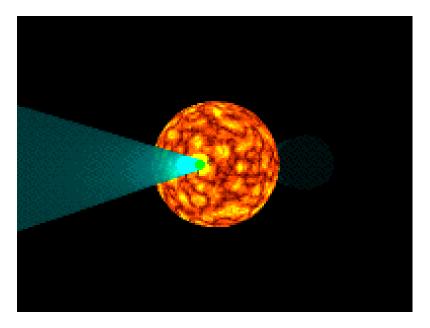
Bhal Chandra Joshi

National Centre of Radio Astrophysics (TIFR), Pune

Space Weather: Science and Applications (ISWI workshop - UNOOSA)

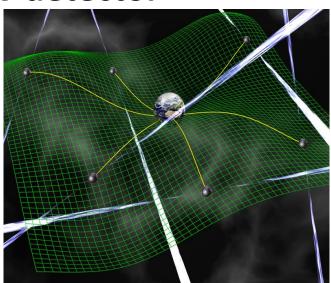
Image Credit : Pravin Raybole

Introduction


- Space weather can be directly probed by several methods
- Indirect probes
 - Observations directed at other targets
 - Space weather is a nuisance, yet needs to be accounted for
- Precision pulsar timing for discovery of nano-Hz gravitational waves (GWs)
- Radio pulsars the celestial clocks
- Pulsar Timing Arrays (PTAs) the celestial instrument using pulsars
- High precision measurements with low frequency telescope the upgraded GMRT
- Review of PTA experiments relevant to space weather
- Detection of CME-solar wind interaction by InPTA experiment
- Conclusion and discussion

Radio Pulsars

- Radio pulsars are massive compact neutron star (M ~ 1 Mo; R ~ 10 km)
- Emission is a train of narrow highly periodic pulse (1.3 ms to 77 s)
- Narrow rotating radio beam celestial light houses
- Stability is due to large kinetic energy reservoir 10 billion times
- Useful celestial clocks for detecting ultra-low frequency GWs


Ensemble of pulsars – PTA GW detector

- GWs are small propagating perturbation of space-time
- GWs manifest themselves as systematic "noise" in pulse frequency measurement
- Detection of GWs requires correlated deviation across an ensemble of pulsars.

Image Credit : MPIfR, David Champion https://www.mpifrbonn.mpg.de/research/fundamental/forces

- Pulsar Timing Array (PTA)
 - A celestial detector of pulsars uniformly distributed across the sky
- GW source
 - super massive black hole binary system
 - typical orbital period of decades (frequency ~ nano-Hz)
 - signature varies slowly over years
- GW is like a common "red noise" process
- Required precision ~ ns

November 2, 2021 Space Weather: Science and Applications (ISWI workshop - UNOOSA)

Pulsar Timing

- Measured ToA time on the average pulse based on atomic clocks
- Predicted ToA based on a rotational model of pulsar
 - Pulsar positional parameter
 - Spin parameters
 - Solar system ephemeris
 - Binary Keplerian and post-Keplerian parameters

TEMPLATE PSR J1713+0747

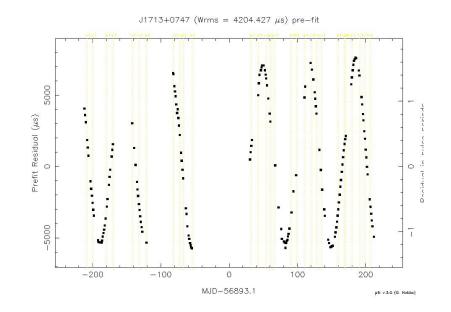
- $\mathbf{t}_{\mathsf{SSB}} = \mathbf{t}_{\mathsf{topo}} + \mathbf{t}_{\mathsf{clock}} + \Delta_{\mathsf{p}} + \Delta_{\mathsf{RO}} + \Delta_{\mathsf{SO}} + \Delta_{\mathsf{EO}} + \Delta_{\mathsf{A}} + \Delta_{\mathsf{DMO}} \mathsf{D/f^2} + \Delta_{\mathsf{R}} + \Delta_{\mathsf{S}} + \Delta_{\mathsf{E}} + \Delta_{\mathsf{B}}$
- Assumed model of pulsar rotation (t = t_{SSB})

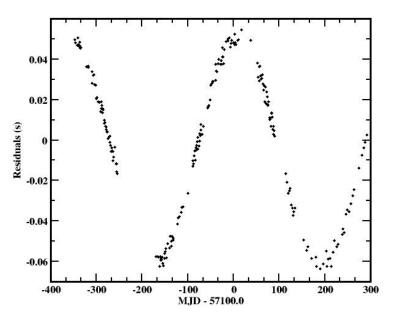
$$v(t) = v_0 + v_{dot}(t-t_0) + \frac{1}{2} v_{ddot}(t-t_0)^2$$

• Calculate pulse number from the above two relations

$$N = v * (t - t_1)$$

- Timing residual difference between measured and predicted time-ofarrival
- GW is unmodeled systemic deviations with a "red noise" signature

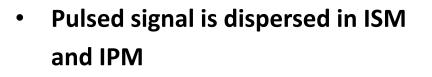

November 2, 2021 Space Weather: Science and Applications (ISWI workshop - UNOOSA)



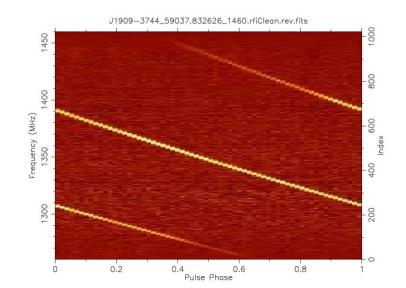
Pulsar Timing in action

 Determining position of GMRT discovery pulsar – PSR J2208+5500 68 day Orbital period PSR J1713+0747 observed at ORT

Phase Residual for PSR J2208+5500


(Joshi et al. 2009, MNRAS, 398, 943; Surnis, Joshi et al. 2019, ApJ, 870, 8)

November 2, 2021 Space Weather: Science and Applications (ISWI workshop - UNOOSA)



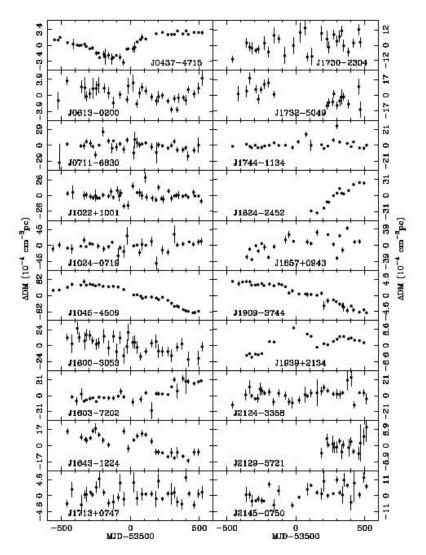
Pulsed signal and medium

 $\Delta \tau = 4.15 [(v_{lo}/GHz)^{-2} - (v_{hi}/GHz)^{-2}] DM$

 $DM = e^{3}/(2\pi m_{e}^{2}c^{4})\int_{0}^{d} n_{e} dI$

- Dispersion delay is predominantly due to ISM
- ISM : n_e ~ 0.03 per cm⁻³ ;L ~ 1 kpc ~ 30 pc-cm⁻³
- IPM : n_e ~ 10 per cm⁻³; L ~1 au ~ 0.001 pc-cm⁻³ (3 order of magnitude small)
- Dispersion delay is a strong function of frequency
- Higher precision measurements possible at lower frequencies

November 2, 2021 Space Weather: Science and Applications (ISWI workshop - UNOOSA)

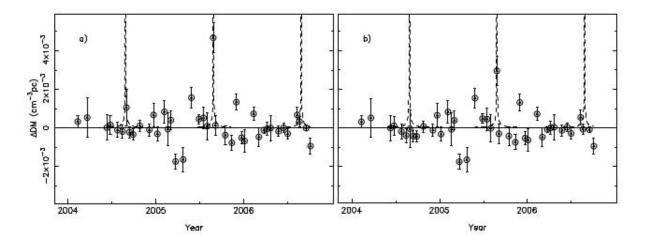


Sensitivity to solar phenomenology

- No significant variations in DM measured or reported in 1970-2000
- The requirement of ns timing in PTA experiment motivated measurements up to 3rd decimal place
- Slow variations of DM reported by 2007 in PTA data sets

(You et al. MNRAS, 378,493)

- Changes in SW or events such as CMEs enhance ne in IPM by 1000 times
- Line of sight of many PTA pulsars come close to few degrees every year
- Pulsar astronomers have to take solar wind into account


Past investigations - I

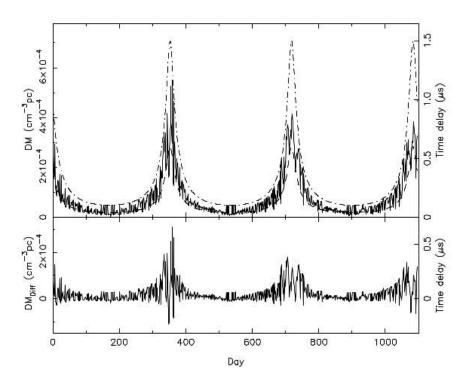
Sporadic studies of solar phenomenology before 2000

Counselman et al, 1968, Sci, 162,352; Counselman et al, 1972, ApJ, 175,843;Archibald et al. 2018, Nat, 559,73

- First systematic study of the effect of solar wind You et al. 2007, MNRAS, 378, 493
- Solar wind needs to be accounted for high precision timing
- Simplest solar wind model spherically symmetrical electron density
- $n_{esw} = A_{sw} [1AU/r]^2$ (Δ_{DMO} term in timing formula)

Edwards et al. 2006, MNRAS, 372, 1549; Madison et al. 2019, ApJ, 872, 150

This model fails to explain PTA data

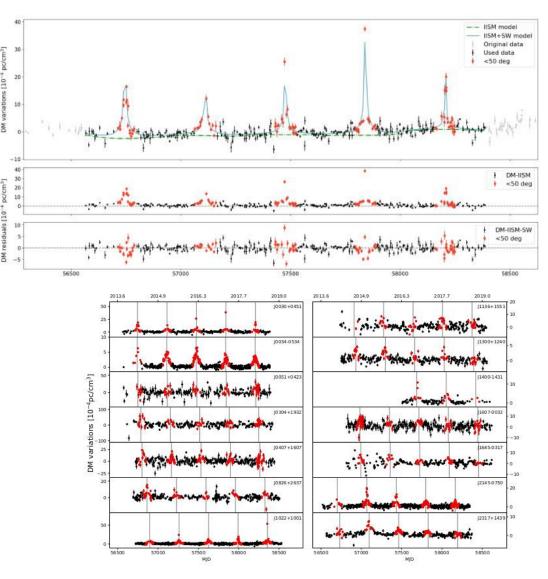


Past investigations - II

- Electron density distribution is more complex
- Solar wind is bimodal at minima (Schwenn 2006, Living reviews in solar physics)
- High velocity (600 to 800 km/s) low density (3 per cm^-3) "fast wind"
- Slower ((<400 Km/s) wind is denser (10 per cm^-3)

(Tokumaru et al. 2010, J. Geo. Res, 115, A04102; Manoharan et al. 2003, Lect in Phy, p299)

- Interaction of "slow" and "fast" wind can produce over dense regions
- Nature and bimodality of SW varies with solar cycle (Schwenn 2006)
- Modeling data with two component model (You et al 2007, ApJ, 671, 907)

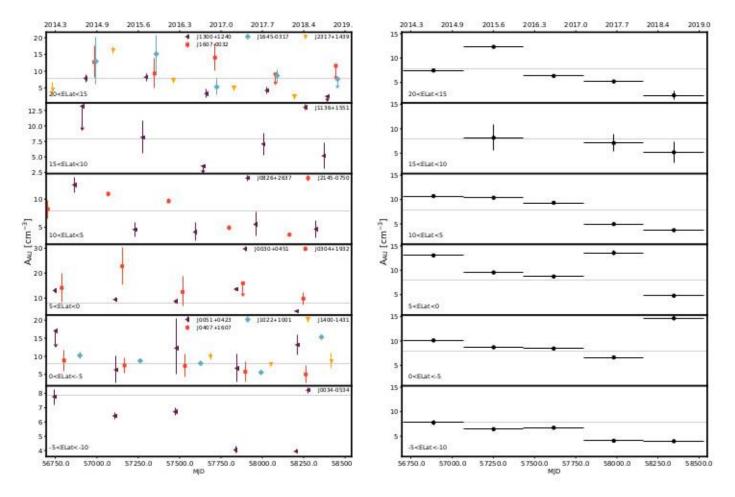


Variability of Solar wind

 More detailed studies have shown an yearly variability in the solar wind

(Tiburzi et al. 2021, A&A, 647, A84)

- Suggest a more complicated model of solar wind needed for PTAs
- A useful by-product can be measurements of solar wind variability
- PTA measurements at low frequency provide useful complimentary measurements
 - To confirm the results of other probes
 - To provide additional inputs



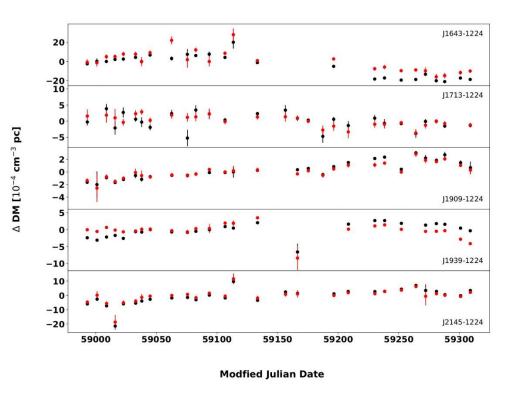
Variability of Solar wind

• Solar wind varies with time and ecliptic latitude

(Tiburzi et al. 2021, A&A, 647, A84)

November 2, 2021

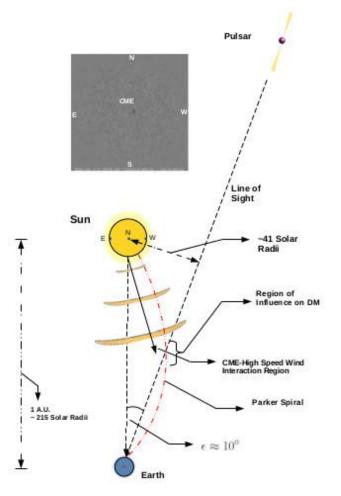
Space Weather: Science and Applications (ISWI workshop - UNOOSA)

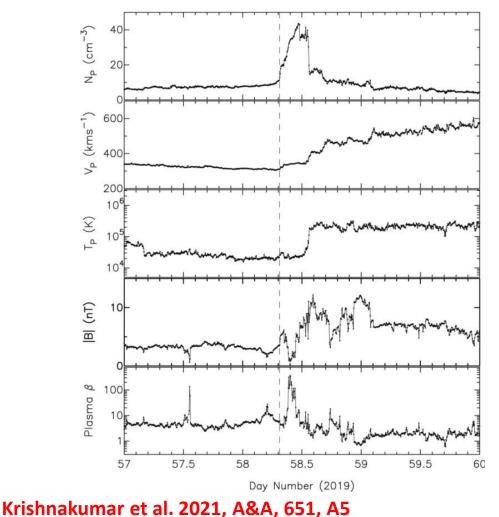


- PTA measurements can also probe transient events
- February 2019 event detected in by InPTA
- InPTA monitors 20 pulsars once every 15 days
- Unprecedented precision on 0.0001 to 0.00001 pccm⁻³ (0.1-1.0 per cm⁻³) due to measurements at 300-500 MHz

(Nobleson et al. 2021, in prep)

PSR J2145-0750
 approaches Sun ~ 5 deg
 between January to March





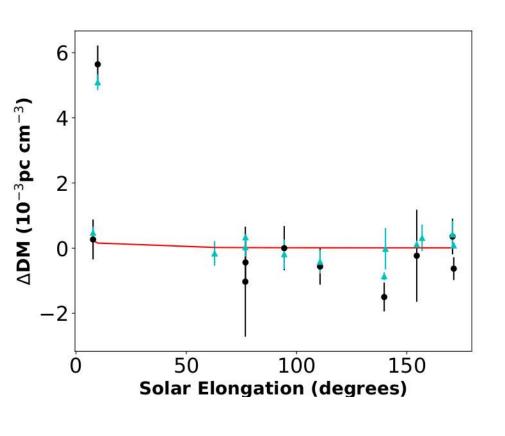
ICMEs on February 23, 2019

Geometry of passage of shock region in line-of-sight of the pulsar

Density enhancement from interaction of slow and fast solar wind with CMEs

November 2, 2021

Space Weather: Science and Applications (ISWI workshop - UNOOSA)



Our measurements

An enhancement in DM of the order of 0.006 pc-cm⁻³ is seen

- This corresponds to density enhancement to 5000 per cm⁻³
 - Steeper gradient of R^{-2.5} implied
 - compact transverse region implied

Krishnakumar et al. 2021, A&A, 651, A5

Conclusions

- High precision is required by Pulsar Timing Arrays for GW detection
- This motivates measurement precision of 1 part in 4 or 5 for DM
- This corresponds to measurement of column density enhancements of 0.1 per cm⁻³
- Thus, measurements of solar wind and its variability across solar cycle is possible with PTAs
- PTAs are capable of detecting density enhancement in transient shocks in ICMEs or solar wind interaction region
- Thus, PTA can provide complimentary probes of space weather

Thank you for your attention