

Extreme Space Weather During Quiet Solar Conditions: Dynamics of the Low-Latitude Ionosphere

Keith Groves and Charles Carrano Boston College Massachusetts, USA

UN-ISWI Workshop on Space Weather: Science and Applications Vikram Sarabhai Space Centre of the Indian Space Research Organization

2 - 3 November 2021

- Most space weather impacts are driven by impulsive energetic events on the sun
- However, at low latitudes, the strongest electron densities irregularities in the ionosphere form routinely due to internal ionospherethermosphere coupling with no solar excitation

- Instabilities are driven by the action of the neutral wind, electron density gradients at sunset and the horizontal magnetic field at the equator
- The processes are actually suppressed during magnetic storms
- We care because the irregularities cause strong scintillation of radio waves critical to space-based communications and navigation systems

Disturbed Ionospheric Regions and Systems Affected by Scintillation

"WORST CASE" FADING DEPTHS AT L-BAND

[After Basu, et al., 2005]

What Are Equatorial Dynamics?

Formation of Anomaly Region

- Presence of anomaly crests strengthens off-equator scintillations
- State of anomaly formation is indicative of equatorial dynamics

Why Do Disturbances Form? Unique Equatorial Magnetic Field Geometry

Equatorial scintillation occurs because plasma disturbances readily form with horizontal magnetic field

- Plasma moves easily along field lines, which act as conductors
- Horizontal field lines support plasma against gravity– unstable configuration
- E-region "shorts out" electrodynamic instability during the day

What Is Instability Process? Basic Plasma Instability

View along bottomside of ionosphere (E-W section, looking N from equator)

Plasma supported by horizontal field lines against gravity is unstable

- (a) Bottomside unstable to perturbations (density gradient against gravity)
- (b) Analogy with fluid Rayleigh-Taylor instability
- Perturbations start at large scales (100s km)
- Cascade to smaller scales (200 km to 30 cm)

What Controls the Instability Onset?

• The linear growth rate of the Rayleigh Taylor Instability (RTI) does not depend on a strong solar driver:

- After sunset the first term rapidly approaches unity when the terminator is aligned with the magnetic flux tube (E-region dark on both ends of field line)
- The 2nd term becomes the primary driver in most cases; it gets a boost near sunset due to the zonal density gradient imposed by the solar terminator
- All terms can play a role depending on conditions; longitudinal differences in activity may provide important insights into the relative importance

3D Model Realizations of Bubbles

Nonlinear fluid calculations of fully developed instability

• Full fluid treatment simulations at scintillation-scale spatial resolution (~500 m)

220840-000327-6300-HRP.keo

ALTAIR Incoherent Scatter Radar Scan 27 Sep 2008 11:22 UT

Retterer

ALTAIR Coherent Scatter Radar Scan 27 Sep 2008 10:49 UT

From J. M. Retterer

How Routinely Occurring are the Instabilities? DMSP Observations Solar Cycle 23

- Peak occurrence rates ≥ 50% were observed during active periods in the American-African longitude sectors
- This sensor only samples bubbles higher than ~825 km (underestimates actual occurrence percentage by as much as 50%); bubble height is a function of longitude—detection rates outside the American sector will be less accurate
- During solar minimum very low detection rates were observed due to a combination of lower bubble occurrence and lower bubble altitudes.

Scintillation Physics Simple Picture

$$\tau_{d} = R/c + \frac{r_{e}c}{2\pi} \frac{N_{tot}}{f^{2}}$$

$$N_{tot} = \int N_{e}(z)dz$$

$$\varphi = 2\pi f R/c - r_{e}c \frac{N_{tot}}{f}$$
Phase change due to ionized layer
$$\delta \varphi \approx 5 \times TEC \text{ radians}$$

- Phase variations on wavefront cause diffraction pattern on ground
- A phase changes of ~ π radians (i.e., 0.6 TEC units) required for total destructive interference
- But the variations must occur over limited spatial scale (Fresnel zone)

GPS Signal Fluctuations Caused by Ionospheric Scintillation

GPS Positioning Errors During Solar Max

Scintillation can cause rapid fluctuations in GPS position fix Typical night from field experiments during solar maximum 20 22 24 26 75 18 28 -75-50 -25 D 25 50 175 10 8 50 Used Sats. 6 25 2 North (m) 0 (5.0 ΛI Scintillating Sats. (S. -25 5 3 -502 Û -75 18 20 22 24 26 -75 -50 -25 25 50 75 28 0 UT (hours) East (m) CEP: 0.1m Time: 18:01 UT Used: 10 Scint: 0 0.2 0.3 0.8 1.0 0.0 0.5 0.7 Max S.

- Instabilities occur routinely at low magnetic latitudes affecting nearly ½ the earth's surface in the absence of eruptive solar events and magnetic storms
- The instabilities produce small-scale irregularities that can generate strong scintillation affecting frequencies from HF to L-band (solar maximum)
- Numerous scintillation-induced GNSS performance impacts have been observed and documented during solar maximum periods
- Although the instabilities occur routinely and the source mechanisms and evolution are largely understood, the ability to make nightly forecasts of such activity more than ~2 hrs in advance remains elusive
- While some relatively robust physical models exist, our ability to specify the initial state of the ionosphere/thermosphere is inadequate—we simply cannot determine the ionized and neutral atmospheres' densities and drifts with sufficient resolution and coverage to give the models a chance

Thank you for your attention!