Characterization of ADS-B Performance Under GNSS Interference

Zixi Liu, Todd Walter, Yu-Hsuan Chen, Sherman Lo, Juan Blanch GPS Lab, Stanford University December 2022

Objective

To achieve rapid GNSS interference detection and localization using ADS-B (Automatic Dependent Surveillance-Broadcast)

Bottom line up front:

- ADS-B is a good tool for identifying interference, but there are several challenges to implementing it reliably
 - Airborne sensors very good at detecting interference
 - Capable of good localization performance under ideal conditions, but more often conditions are less than ideal

Navigation Integrity Category (NIC)

NIC specifies an integrity containment radius that the current horizontal position is guaranteed to be within, with 99.999% probability.

	NIC	Containment Radius	
	0	$R_c \ge 37.04 \text{ km}$ (or Unknown)	
	1	R _c < 37.04 km (20 NM)	
	2	R _c < 14.816 km (8 NM)	
	3	$R_c < 7.408 \text{ km}$ (4 NM)	
	4	$R_c < 3.704 \text{ km}$ (2 NM)	
	5	$R_c < 1852 m$ (1 NM)	
	6	$R_c < 1111.2 \text{ m}$ (0.6 NM)	
		$R_{\rm c} < 926 {\rm m}$ (0.5 NM)	
		$R_c < 555.6 \text{ m}$ (0.3 NM)	
Nominal condition	7	$R_c < 370.4 \text{ m}$ (0.2 NM)	
	8	$R_c < 185.2 \text{ m}$ (0.1 NM)	
	9	R _c < 75 m	
	10	R _c < 25 m	
	11	R _c < 7.5 m	
		1	

2022: Denver Jamming Event

- On January 21, 2022, a GPS interference event occurred in the vicinity of Denver airport
- Event persisted for nearly 33 hours
- Interference source traced to nearby location
- NOTAM issued indicating use of GPS could be unreliable for 50 NM radius around airport
- Fort Collins All ADS-B Reports 40.6 NIC < 7NIC = 0Mean NIC = 0Greeley Loveland 40.4 Rocky Mountain 34 Brush National Park Furt-Morgano (34) Long nont 40.2 Boulder 40 o and atitude evelt na 39.8 sts Denve **Byers** 36 Lakewoodo A urora 39.6 Littleto 39.4 285 Limon 39.2 24 Hugo -104 -103.5 -105.5 -105 -104.5Longitude (deg)

ADS-B Data Between 21-Jan-2022 20:54:00 to 21-Jan-2022 20:59:00 (UTC)

- Affected arrival and departure operations
- Local rail usage including positive train control impacted
- Some disruption of cell tower time synchronization

4

January 22, 2022 ADS-B Data

Within First 30 seconds of event, it was already possible to get a good initial estimate of the jammer location

Not always this easy, depends on aircraft distribution and jammer characteristics

Inferred measured P_r from NIC

Figure 9.3 Tolerable J_{dB} as a function of tracking threshold for L1 C/A, L2 CL and L5 Q5 signals.

Kaplan, E. D., and Hegarty, C. (2017). Understanding GPS/GNSS: Principles and applications.

NIC	Pr[dBW]	
		High power
0	[-100, 0)	Low power
1	[-105, -100)	
2	[-110, -105)	
3	[-115, -110)	
4	[-120, -115)	
5	[-125, -120)	
6	[-130, -125)	
7	(-∞ <i>,</i> -130)	On the boundary
		Far away

Pr[dBW]

Local optimal P_t

Gaps in ADS-B Reports

- Aircraft may be beyond Line-Of-Sight (LOS) of ADS-B ground stations
- Aircraft affected by RFI may not be able to report their position
 - NIC value change is used to infer as to whether aircraft is beyond LOS or possibly jammed

Figure 3 Illustration of Aircraft affected by local jamming sources

Interpolation Results

Prior to Interference: Jan 21 (0 UTC) – Jan 21 (2059 UTC)

- High terrain, mountain areas experience intermittent loss in signal, as well other rural areas outside of KDEN
- Also susceptible to aircraft performing high bank turns
- Consistently noticed in dataset before and during reported interference

Interpolation and Localization Results

During Interference: Jan 21 (2100 UTC) – Jan 22 (0659 UTC) (1400 – 2400 Local Time)

Interpolation and Localization Results

During Interference: Jan 22 (0700 UTC) – Jan 23 (0659 UTC) (2400 – 2359 Local Time)

Interpolation Improvement to Flight Gap Dataset

	Jan 21, 2100- Jan 22, 0659 UTC	Jan 22, 0700-Jan 23, 0659
Duration of ADS-B Data with NIC=0 [hr]	4.95	11.647
Data points added from Interpolation [hr]	2.22	4.45
Percent Increase of NIC=0 from Interpolated Data	44.69%	38.21%

Dallas RFI Event October 17-20, 2022

Intermittent

- Initial start time: October 17, 2022, 19:21
- End time: October 20, 2022, 04:45
- Affected arrival and departure operations
- No significant reports of interference on the ground
- Origin unknown

Number of Affected Aircraft vs. Total Aircraft in the Region

Oct 19, 2022

Time [UTC]

Oct 20, 2022

Time [UTC]

Stanford University

Flights with no NIC Changes Removed

Some receivers show no impact due to interference despite close proximity to jammer (may be using inertial measurements)

Stanford University

Location Estimate for Omnidirectional Antenna - October 17 20:00:00 to 22:30:00

Stanford University

Location Estimate for Omnidirectional Antenna – October 18 14:00:00 to 16:30:00

Directional Antenna

Angle of the line between aircraft and jammer, clockwise from North.
▶ (340°, 60°)
▶ (160°, 240°)

Mainly flights within these angles are affected.

Location Estimate for Directional Antenna -October 17 20:00:00 to 22:30:00

Summary

ADS-B can be useful for identifying and localizing GNSS RFI

> Estimation quite accurate for Denver event

> However, many challenges remain when processing the data

- Missing data, poorly sampled regions, aircraft that may be relying on a non-GNSS source of determining position, erroneous positions, directional antennas, multiple jammers ...
- Interpolation of position for data gaps associated with drops in NIC provides additional data that is very useful for improving the localization
- Evaluating two methods for localization
 - > Least squares estimator
 - > Bayesian estimator
 - > Both provide accurate estimates for observed Denver event

