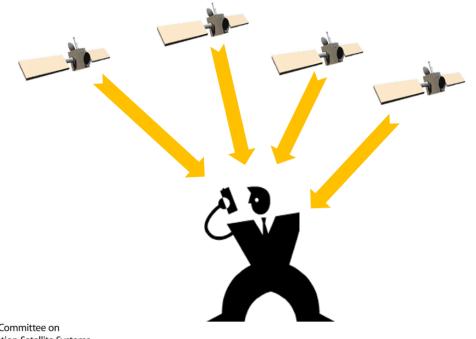


International Committee on Global Navigation Satellite Systems

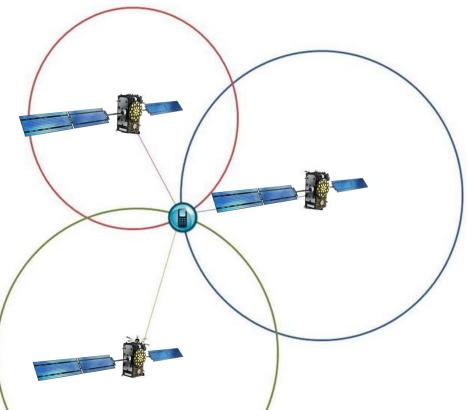
GNSS, How it Works and Applications


Historic Navigation

- Reference points in the sky used for navigation
 - The Sun
 - The Pole Star / North Star
 - Southern Cross
- Gives Direction, but not position
- Add a sextant to give latitude
- And a clock to give longitude

GNSS Principles

- GNSS satellites in the sky are the new reference points
- If my GNSS receiver "sees" 4 or more satellites, it can compute my position
 - "see" means track and process navigation signals



International Committee on Global Navigation Satellite Systems

Satellites as Accurate Reference Points

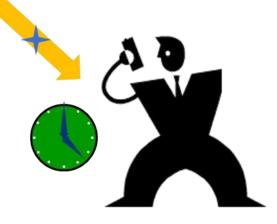
- GNSS signals contain information about the satellites' positions
 - very accurate reference points
- Measure the distance from the satellites to the receiver
- Knowing at least three distances from three reference points gives position

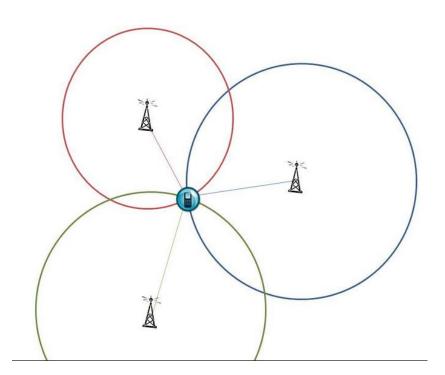
How do you measure distance?

speed = distance / time

⇒ distance = speed x time

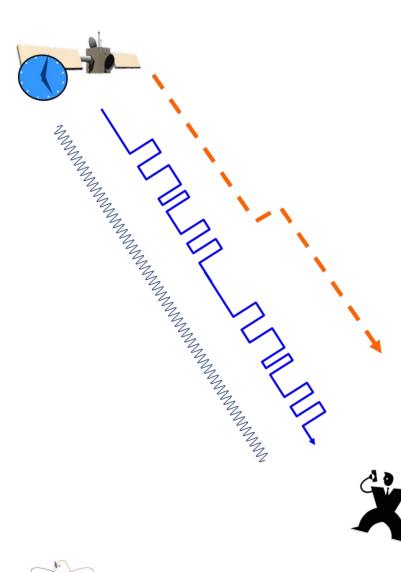
satellite signals contain 'time stamps'


time = $t_{sent} - t_{received}$


radio waves travel

at light speed "c"

- 300,000km in 1 second
- 300km in 1ms (1/1000th)
- 300m in 1µs (1/millionth)
- 300mm in 1ns


International Committee on Global Navigation Satellite System

- **speed** = $3x10^8$ m/s
- **time** = $t_{sent} t_{received}$
- but, receiver time not accurately known
- so the time stamp from a fourth satellite is measured
- compensates for the missing receiver time

Example GNSS Signal

- radio frequency at "L-band" – typically 1575MHz
- at satellite: signal energy spread by a code
- at receiver: spread signal energy is unlocked and refocused
 - "code gain"
- allows simple antennas to receive low power signals
- and to share the frequency with other satellites/systems

Position relative to?

- A position is pointless without having a ground reference
- A world reference is used, eg WGS84
 World Geodetic System 1984
- Allows position fix to be placed on a World grid
- Maps can be referenced to the same grid
- you can determine where you are on a map

What is GNSS used for?

PNT

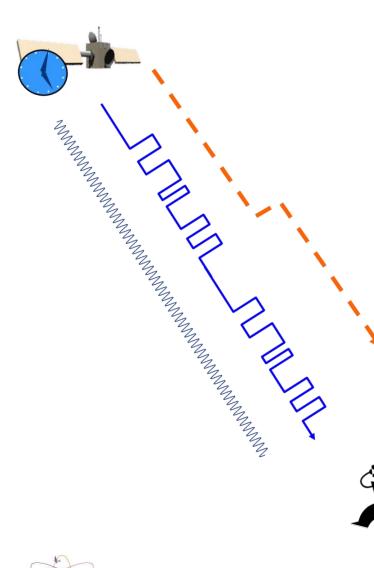
- Positioning... surveying and mapping
 - location based services
 - air traffic management
 - search and rescue
- Navigation... a given. cars, ships, cranes
 - remember GNSS gives position, you still need reliable/up-to-date maps and routing software
- Timing?... most large networks synchronised
 - telecoms
 - electricity distribution
 - banking... microseconds matter for transactions!

What about?

- Monitoring sea/lake/snow levels

 uses GNSS reflections seen into a fixed receiver
- Atmospheric measurements
 - GNSS signals change as they pass through atmosphere: air quality, gaseous content, etc
- Space weather monitoring

 measuring changes in the ionosphere
- Soil and vegetation moisture measurements
- Volcanic plume density measurements
 - atmospheric ash uncertainty after eruptions
- Sea surface roughness, wind direction and more
- Earthquake/tsunami monitoring....


International Committee on Global Navigation Satellite Syste etc, etc.....

International Committee on Global Navigation Satellite Systems

GNSS compared to terrestrial signals (why GNSS is vulnerable)

GNSS signal power

- radio waves disperse energy as they propagate
- satellites are 23,000km away
- signal emitted at about 30W
- signal strength proportional to: ¹/_{distance²}
- at 23,000 km, GNSS signal reduced by a factor of about 10¹⁸!
 - Imagine trying to see a lightbulb 23,000km away
 - signal levels are below the natural background radiation

Terrestrial signal powers

- mobile phone base station
 - typical transmit power,10-100W
 - signal power reduction depends on range
 - at 10km, signal power reduced by factor of 10^{11}
 - at 1km, reduced by 10⁹
 compared to the GNSS signal (10¹⁸ reduction) it is over billion times stronger
- mobile phone, typical transmit power, 0.1-1W connected to a cell tower at 1km

- typical signal reduction 10⁹

still over a million times stronger than the GNSS signal!

Expected receiver signal power levels

- GNSS receivers expect to receive and can operate at signal levels even below the natural background radiation level, the "noise floor"
- GNSS receivers need a minimum power level "-130dBm"
 - GNSS receivers designed to work at these low levels
 - provided they are not overloaded by other signals
 - modern GNSS receivers can use even lower levels!
- Mobile phones (eg GSM) expect a minimum "-104dBm"
 - around a thousand times higher than GNSS

Consequences of the different levels

- The large difference between GNSS and mobile signal levels make GNSS receivers comparatively more susceptible to interference
 - mobile network devices also have the luxury of being able to raise their power levels in steps to cope with obstructions and poor radio environments - GNSS cannot, the low power level is fixed
- If GNSS signals shared frequencies with mobile systems, they would be swamped by interference
- GNSS reception would not be possible

How do you avoid interference?

- To avoid such interference, the Radio Regulations^{*} separate different types of services (eg terrestrial mobile, satcoms, TV) into different frequency bands
 - eg mobile at 900MHz
 - TV at 600MHz
 - satcoms at 1650MHz
 - GNSS at 1575MHz
- However, when high power services operate in nearby frequencies, interference to GNSS is still possible (covered later)

* the Radio Regulations is treaty text agreed between the 195 member states of the International Telecommunication Union

G International Committee on Global Navigation Satellite Syste