Performance of low-cost GNSS receivers for ionospheric studies

A. Kashcheyev1, B. Nava2

1. Physics Department, University of New Brunswick, Fredericton, Canada
2. The Abdus Salam International Centre for Theoretical Physics, Italy

Special thanks to: Elijah Oyeyemi & Busola Olugbon (Nigeria), Olivier Obrou (Cote D'ivoire), Solomon Lomotey (Ghana), Babatunde Rabiu & Aderonke Ekemi (Nigeria), Marco Rainone (Italy)
Outline

• Intro
 • Ionosphere
 • Ionosphere effects on GNSS
 • How to estimate TEC
 • Research studies: TIDs
 • Solar eclipse
 • Data assimilation

• Devices under test

• Data
 • Map
 • Magnetic activity level

• Results
 • Uncalibrated TEC
 • Cycle slips
 • Calibrated TEC
 • Model validation

• Conclusions
Ionosphere

- Ionized part of the atmosphere from ~60 to a few thousand km above the ground, so-called magnetized cold plasma or weakly ionized gas
- Formed by solar radiation, namely by photochemical absorption processes
- Loss is due to recombination processes
- Due to different ionization production and loss processes the electron density profile with altitude shows a layered structure that changes with time, location and solar activity
- The borders between layers are inflection points in the ED profile
- It is accepted to distinguish D, E and F (F1 and F2) layers
- Structure is highly dynamic and depends on many parameters
Ionosphere effects on GNSS signals

- Range errors
 - Group delay
 - Phase advance
 - Depend on the electron density along the ray path

\[d = \frac{40.3}{f^2} \int_{sat}^{rec} n_e \, dl \]

- Highly variable with time/space

- Scintillation
 - Rapid random changes in amplitude and/or phase of the signal

- Doppler shift
 - Change in carrier frequency
How to estimate TEC

Dual frequency GNSS receivers

\[TEC \sim \frac{1}{40.3} \left(\frac{f_1^2 f_2^2}{f_1^2 - f_2^2} \right) (L_2 - L_1) \]

Total electron content (TEC) is the number of electrons in a column with a cross section of one square meter along the signal path.
Research studies: TIDs

Tsugawa, T., Kotake, N., Otsuka, Y. et al. Medium-scale traveling ionospheric disturbances observed by GPS receiver network in Japan: a short review. GPS Solut 11, 139–144 (2007)

Zakharenkova, I., Astafyeva, E., and Cherniak, I. (2016), GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm, J. Geophys. Res. Space Physics, 121, 12,138–12,156
Research studies: Solar Eclipse

Research studies: Data assimilation

NeQuick VTEC month: 4 UT: 14:00 F10.7: 190 s.f.u.
Devices under test (DUT)

- Septentrio PolaRx5S, up to 100Hz, >10k $
- Swift Piksi Multi, up to 20 Hz, 1k $
- U-Blox ZED-F9P, up to 20 Hz, 250 $
Low latitudes
- Lagos, Nigeria
- Abidjan, Côte d'Ivoire
- Abidjan, Ghana
- Abuja, Nigeria

Mid latitudes
- Fredericton, Canada

High latitudes
- Qikiqtarjuaq, Canada
Data: geomagnetic activity level
Results: uncalibrated TEC

Credits: Elijah Oyeyemi, Busola Olugbon
Results: uncalibrated TEC

Nigeria, Abuja, 9.1° N, 7.4° E
Results: cycle slips

Nigeria, Abuja, 9.1° N, 7.4° E
Results: calibrated TEC

Côte d'Ivoire, Abidjan, 5.34° N, 3.99° W

Credits: Olivier Obrou
Results: model validation Côte d'Ivoire, Abidjan, 5.34° N, 3.99° W

STEC

VTEC
Conclusions

• Low-cost dual frequency GNSS receivers are a great alternative to geodetic/scientific grade receivers to estimate TEC values

• Their performance is comparable across different latitudes: low, middle, and high

• More investigations must be done in order to understand whether they can be used for scintillation monitoring
Proposed setup

- ArduSimple U-BLOX F9P evaluation board - $235 USD

- TOPGNSS AN-105L antenna - $65 USD
 https://www.aliexpress.us/item/3256802908957760.html

- LMR-240 cable 15m - $80 USD

- Raspberry Pi 4B, 4GB, 32 GB - ~$100 USD (pre-covid times)
 any other single board computer with one USB port, Ethernet/WiFi and Linux/Windows OS will work