2022 ISWI Workshop Baku, Azerbaijan 31 October 2022

Operational Forecasting of Ground Effects Using the Gorgon MHD Model

M. J. Heyns¹, J. W. B. Eggington¹, R. T. Desai^{1,2}, L. Mejnertsen¹, M. O. Archer¹, C. Cave-Ayland³, H. Kelly¹, J. P. Chittenden¹, J. P. Eastwood¹

¹Blackett Laboratory, Imperial College London, UK ²Centre for Fusion. Space and Astrophysics. Warwick University. UK ³Research Computing Service, Imperial College London, UK

Natural

1

Imperial College London

Increasing Our Resilience to Severe Space Weather

- Global magnetohydrodynamic (MHD) simulations of the magnetosphere can provide accurate and actionable predictions of geomagnetic activity faster than real-time
- These physics based models can be driven with:
 - Live upstream L1 monitor data, e.g. ACE/DSCOVR (~30 min lead time)
 - Forecasts from first-principles heliospheric model, e.g. EUHFORIA (2-3 day lead time)
- Recently, the Gorgon MHD model has been optimised for real-time global magnetospheric forecasting as part of:
 - SWIMMR Activities in Ground Effects (**SAGE**) project
 - ESA's Virtual Space Weather Modelling Centre (**VSWMC**)
 - ESA **P3-SWE-XLV** '3D MHD Modelling of the Earth's Magnetosphere', in collaboration with UiB

Image Credit: Nvidia GPU rendered visualisation, J. W. B. Eggington

Imperial College London

Gorgon MHD Code – An Overview

- Explicit, Eulerian formulation of resistive MHD equations on 3D Cartesian grid (Ciardi + 2007)
 - Satisfies $\nabla \cdot \mathbf{B} = 0$ to machine precision via vector potential and staggered grid variables
- Split dipole implementation with previous applications for Earth and Neptune magnetospheres (Mejnertsen + 2016, 2018, 2021, Eggington + 2020, 2022a,b, Desai + 2021a,b)
 - Magnetosphere-ionosphere coupling captured as inner boundary condition via thin-shell model

Operational Forecasting of Ground Effects

Gorgon MHD Code – Model Details and Operational Setup

Parallelised Fortran, with faster than real-time performance on ~200 CPUs at ICL, KUL and UK Met Office

- <u>Input</u>:
 - Solar wind parameters, Earth dipole and rotation axis orientations
- <u>Output</u>:
 - Magnetospheric and ionospheric grid variables over time
 - Benchmarks (R_{MP}, CPCP, Joule heating, ground **B-field**, etc)
 - Visualisations via 'Gorgon Tools' Python package

Operational Gorgon Setup		
Domain	$X = [-24, 66] R_E, Y = [-40, 40] R_E,$ $Z = [-40, 40] R_E,$ uniform 0.5 R_E grid resolution, 3 R_E inner boundary	
Field	Dipole strength and latitude taken from IGRF data covering 1900-2025	
lonosphere	Thin-shell model with empirical conductances (solar EUV, auroral + polar cap contributions)	
Solar Wind	Measured (e.g. DSCOVR/OMNI) or modelled (e.g. EUHFORIA) L1 data with Earth's diurnal rotation imposed	

Data credit: Gordeev + 2015

Imperial College London

Gorgon MHD Code – Integrating Particles

- Test particle simulations run in parallel with Gorgon (Desai + 2021)
- Electromagnetic forces are calculated for particles using the time-evolving Gorgon MHD fields
- Direct application in radiation belt modelling within the SWIMMR SatRisk project through delivery of "extreme event" look-up database to the MET Office
- Future work to self-consistently include particle contributions

Imperial College London

Gorgon MHD Code – Estimating the Ground Geomagnetic Field

- Capability to estimate ground magnetic field in-line, in parallel:
 - Explicit Biot-Savart integration (Rastatter + 2014) with line-of-sight masking
 - High-cadence (1 min) prediction for arbitrary test stations, e.g., gridded input to BGS geoelectric field model within SAGE project context

Imperial College London

Gorgon MHD Code – Including Induced Contributions

- Induced current contribution modelled through complex image method (CIM)
- Includes ionospheric currents and **implicit** FACs
- Generalisation to explicit current integration through equivalent current (i.e., Fig. a)

ISWI Workshop 2022

Imperial College London

Gorgon MHD Code – Model Diversity

 Model diversity in estimating the ground geomagnetic field gives a fuller picture

	CalcDeltaB	CIM
Contributions	Magnetosphere, FACs, ionosphere	lonosphere, nett FACs on grid
FACs	Dipolar, line-of-sight	Vertical
Extent	Full simulation domain, spherical coords, line-of-sight	Stereographic projection with 1000km ² grid
Induced Current	Simplified CIM coupling using equivalent current	Explicit inclusion of ionospheric and FAC contributions

Imperial College London

Gorgon @ Met Office: Real-Time Data Example

Operational Forecasting of Ground Effects

EUHFORIA-Gorgon: Simulated CME Impact

- Example within VSWMC deployment, coupled to upstream EUHFORIA model
 - Strong compression of magnetosphere, same trend as empirical models
 - Sharp growth in ionospheric parameters after impact, gradual drop-off

Imperial College London

Gorgon Validation: CME Impact Ground Effects

- EUHFORIA predictions are intrinsically smoother, but agree with OMNI-driven Gorgon onset time and AE magnitude
- OMNI-driven Gorgon captures much of the shorter timescale behaviour seen in measured indices

ISWI Workshop 2022

Data credit: WDC Kyoto U (indices)

Operational Forecasting of Ground Effects

Gorgon Validation: Geomagnetic Storms Ground Effects

- Severe 2017 storm: cross polar-cap potential (CPCP) agreement with SuperDARN, AU captured better than AL
- Moderate 2014 storm: reproduces trends of auroral indices well, suggesting resolution and conductivity sensitivity

Operational Forecasting of Ground Effects

Gorgon Validation: Geomagnetic Storms Ground Effects

• Severe 2017 storm: cross polar-cap potential (CPCP) agreement with SuperDARN, AU captured better than AL

Tailoring Model Outputs for End-Users

- Relevant **end-user** products include: ٠
 - Ground dB and dB/dt at arbitrary stations (gridded) or individual), separate current contributions and include optional induced subsurface current
 - Global geomagnetic indices (e.g. AE, Kp)
 - Potential to develop regional and/or normalised indices, e.g. "AEur", "KEur"
 - Joule heating as proxy for satellite drag
 - Magnetospheric conditions (e.g. magnetopause standoff distance) and visualisations
 - lonospheric conditions (e.g. cross polar-cap potential) and visualisations

ISWI Workshop 2022

60'E

LRV UPS

BFE WNG NGK

LER

Operational Forecasting of Ground Effects

Ongoing Development: What's Next?

- Continuous validation of deployments allows operational testing to feed back into ongoing developments (R2O2R):
 - MHD-derived conductance from auroral precipitation, i.e., improved ionospheric and ground predictions
 - Optimisation of simulation grid (stretched and block-refined),
 i.e., improved accuracy and faster runtime
 - Extension to mid-latitudes regions (region 2 currents)

Operational Forecasting of Ground Effects

Summary

- Gorgon has been adapted to simulate the global magnetosphere faster than real-time
 - Allows for both modelled (e.g. EUHFORIA) and measured (e.g. DSCOVR) solar wind input to produce continuous forecasts of geomagnetic conditions
 - Simulations of past geomagnetic storms and case studies reproduce key trends in observed ionospheric and ground metrics
- A range of in-line and post-processed forecasting products **tailored to end-user needs** is being developed, e.g. local estimations, regional indices and global metrics

Operational Forecasting of Ground Effects

Dr Mike Heyns Email: <u>m.heyns@imperial.ac.uk</u> Web: <u>www.linkedin.com/in/mike-heyns/</u> <u>www.imperial.ac.uk/people/m.heyns</u>

