

Improving space weather forecasting with flux rope CME models in EUHFORIA

Anwesha Maharana^{1,2}, Luis Linan¹ and Stefaan Poedts^{1,3}

¹Centre for mathematical Plasma Astrophysics, KU Leuven, Belgium, ²Royal Observatory of Belgium, Uccle, Belgium

³Institute of Physics, University of Maria Curie-Skłodowska, Lublin, Poland

ISWI, Baku, 31 Oct - 4 Nov, 2022

- A "stone's throw away" from Brussels
- Around 100k inhabitants (mostly university)

Context

- Coronal mass ejections (CME) are major drivers of space weather storms.
- Speed of propagation → ~250 3000 km/s
- Mass of magnetised plasma carried $\rightarrow \sim 10^{12}$ 10^{14} kg
- Based on coronagraph images:
 - Limb CMEs
 - Halo CMEs

Courtesy: ESA (SOHO C2+C3 imagery)

Modelling CME arrival based on CME initiation observations at the Sun (early warning time)

Understanding CME internal magnetic field structure (key to realistic modelling)

Operations-friendly CME models for early prediction of the geoeffectiveness of CME impact

ISWI, Baku, 31 Oct - 4 Nov, 2022

Centre for mathematical Plasma-**Astrophysics**

Interplanetary coronal mass ejection (ICME)

Outline

- Introduction to EUHFORIA
- 2. CME models in EUHFORIA
- 3. Observations based modelling of event 12 July 2012
- 4. Development of new flux rope CME model
- 5. Conclusions

Outline

- Introduction to EUHFORIA
- CME models in EUHFORIA
- 3. Observations based modelling of event 12 July 2012
- 4. Development of new flux rope CME model
- 5. Conclusions

EUropean Heliospheric FORecasting Information Asset (EUHFORIA)

EUropean Heliospheric **FOR**ecasting Information **A**sset (**EUHFORIA**)

Pomoell & Poedts, 2018

Outline

- Introduction to EUHFORIA
- 2. CME models in EUHFORIA
- 3. Observations based modelling of event 12 July 2012
- 4. Development of new flux rope CME model
- 5. Conclusions

CME models in EUHFORIA

Cone model (unmagnetised)
Pomoell & Poedts, 2018

Image courtesy: Camilla Scolini

- Hydrodynamic spherical pulse
- No internal magnetic field
- Uniform speed, density and temperature

CME models in EUHFORIA

Cone model (unmagnetised)
Pomoell & Poedts, 2018

Spheromak model (flux rope - spherical geometry) Verbeke et al, 2019

- Spherical plasma blob (CME legs not modelled)
- Uniform speed, density and temperature
- Linear force free magnetic field solution (Chandrasekhar & Kendall, 1957; Shiota and Kataoka, 2016)

Image courtesy: Camilla Scolini

Spheromak over Cone

- Arrival time, speed and number density peaks reproduced at Earth.
- IMF rotations in all magnetic field components of flux rope are captured.
- Spheromak model improves B and B_z up to 40% as compared to the cone CME.

Spheromak over Cone

Arrival time, speed and **number density** peaks produced at Earth.

F rotations in all agnetic field mponents of flux rope are captured.

Spheromak model improves B and B_z up to 40% as compared to the cone CME.

CME models in EUHFORIA

Cone-like model (unmagnetised) Pomoell & Poedts, 2018

Spheromak CME (flux rope - spherical geometry) Verbeke et al, 2019

FRi3D model (Flux Rope in 3Dextended geometry) Isavnin et al, 2016

- → Flux Rope in 3D (FRi3D) is a fully analytic 3D CME model
 - Global CME geometry
 - ◆ 3D magnetic field configuration
 - Capable of modelling major CME deformations

Goals to achieve:

- → Improving modelling of CME flank encounters at Earth
- → Better prediction of magnetic field configuration

Modelling FRi3D flux rope

Flux rope geometry

Half-width

Half-height

Toroidal height

Poloidal height

Parameters to model CME deformations

Pancaking

Flattening

Skew

Internal magnetic field

Twist

Magnetic flux

Tilt

Modelling CME deformations with FRi3D

Outline

- 1. Introduction to EUHFORIA
- CME models in EUHFORIA
- 3. Observations based modelling of event 12 July 2012
- 4. Development of new flux rope CME mode
- 5. Conclusions

Remote observations

- Fast Earth-directed halo CME
- Single CME event

Remote observations

- Fast Earth-directed halo CME
- Single CME event

In-situ (@ L1)

- Clear CME/ICME association
- ICME: Shock+sheath+Magnetic cloud (flux-rope)

Remote observations

- Fast Earth-directed halo CME
- Single CME event

Moderate geomagnetic storm (prolonged southward Bz)

Estimated Planetary K index (3 hour data)

Begin: 2012 Jul 14 0000 UTC

Geometrical parameters

Insertion time

Latitude

Longitude

Half-width

Half-height

Toroidal height

Poloidal height

Pancaking

Flattening

Skew

Speed

- CME parameters are constrained independently from remote observations.
- Geometrical parameters obtained using a Graduated Cone Shell (GCS, Thernisien et al, 2011) type forward modelling but with additional flexibilities for FRi3D using multi-viewpoint

Centre for mathematical Plasma-Astrophysics

Magnetic field parameters

EUV/X-ray sigmoid

- Tilt/orientation: 45°
- **Helicity:** +1 (right-handed)

Magnetic field parameters

Spheromak FRi3D

- FRi3D arrival time is similar to Spheromak: ~3h
 delay in comparison to observed arrival.
- FRi3D enhances the predictions of |B| and B_z by around 37% and 76% as compared to spheromak.
- Prolonged magnetic field enhancement is reproduced by FRi3D.

EUropean Heliospheric FORecasting Information Asset (EUHFORIA)

Geo-effectiveness predictions using EUHFORIA

Geo-effectiveness predictions using EUHFORIA

Nowcasting vs forecasting

- Using modelled solar wind plasma properties at Earth, empirical geomagnetic indices are computed.
- Solar wind Dst coupling formula (Obrien & McPheron, 2000a,b)
- Improved minimum Bz modelled by FRi3D predicts the minimum Dst

Dst < -100 nT → Severe geomagnetic impact

Geo-effectiveness predictions using EUHFORIA

Nowcasting vs forecasting

- Using modelled solar wind plasma properties at Earth, empirical geomagnetic indices are computed.
- Solar wind Kp coupling function (Newell et al, 2007, 2008)
- Kp index improved by 37% with FRi3D as compared to spheromak.

 $Kp > 5 \rightarrow Severe geomagnetic impact$

Outline

- Introduction to EUHFORIA
- CME models in EUHFORIA
- 3. Observations based modelling of event 12 July 2012
- 4. Development of new flux rope CME model
- 5. Conclusions

New magnetised CME model

Extended CME geometry

Better than spheromak

Computationally inexpensive for operational purpose

Better than FRi3D

CME leg disconnection

Better than FRi3D

Torus CME model: Under development

- In situ observations of CMEs suggest a toroidal geometry. [Marubashi 1997; Marubashi & Lepping, 2007; Kahler & Reames, 1991]
- Miller-Turner magnetic field topology
 - Toroidal geometry
 - Linear force-free ($\nabla xB = \alpha B$)
 - Constant turn

Torus CME configuration

Implementation in ICARUS

- ➤ ICARUS (*Verbeke et al, 2022*): Upgraded EUHFORIA with adaptive mesh refinement (AMR) and grid stretching criteria
- Torus is maintained at its half-crossing and CME injection is continued at the legs.
- Advantage: Simulations with Torus CME are as fast as the spheromak simulations.
- > Future work:
 - Contraction of torus and pushing the whole structure through the boundary
 - Consistent CME disconnection from the Sun

Torus crossing through EUHFORIA boundar

Outline

- Introduction to EUHFORIA
- CME models in EUHFORIA
- 3. Observations based modelling of event 12 July 2012
- 4. Development of new flux rope CME model
- 5. Conclusions

Conclusions

- Magnetized CME models in EUHFORIA improve the geo-effectiveness predictions.
 - FRi3D CME model, with a global CME geometry, is an upgrade over the spheromak model in EUHFORIA.
 - To overcome the computational resource demand by FRi3D, a simpler torus model with Miller-Turner magnetic field configuration is under development.
- Output of EUHFORIA can be coupled with magnetospheric-ionospheric models to predict geomagnetic indices.

Modular design of EUHFORIA enables coupling between CME, heliospheric and magnetospheric models

→Open to collaborations and suggestions for improvement

anwesha.maharana@kuleuven.be

Thank you

anwesha.maharana@kuleuven.be

The circle shows spheromak CME cross-section as compared to FRi3D.

Geometry comparison

Radius when spheromak is halfway through the inner boundary

Spheromak CMEs are modelled with this geometry injected at EUHFORIA inner boundary provide the best agreement to predictions at Earth [*Scolini+2018*].

Optimising FRi3D speed

$$v_{3D} = \frac{d}{dt}(R_t + R_p) = v_{R_t} + v_{R_p}$$

$$v_{R_t} = \frac{d}{dt}(R_t)$$

Rate of change of toroidal radius (R_t) ⇒ Radial speed

$$v_{R_p} = \frac{d}{dt}(R_p)$$

Rate of change of poloidal radius (R_p) ⇒ Expansion speed

Implementation in ICARUS

ICARUS (Verbeke et al, 2022): Upgraded EUHFORIA with adaptive mesh refinement (AMR) and grid stretching criteria

Credits: Tinatin Baratashvili

Torus CME model: Under development

Connecting CME geometry to the torus parameters

Torus CME model: Preliminary results

- Modelling of Event 12 July 2012 with Torus CME
- Speed is overestimated.
- Magnetic field strength can be reproduced up to correct order of magnitude.

Torus CME model: Under development

Evolution of magnetic field profile as half-torus crosses the 0.1 AU boundary

EUropean Heliospheric FORecasting Information Asset (EUHFORIA)

KU LEUVEN