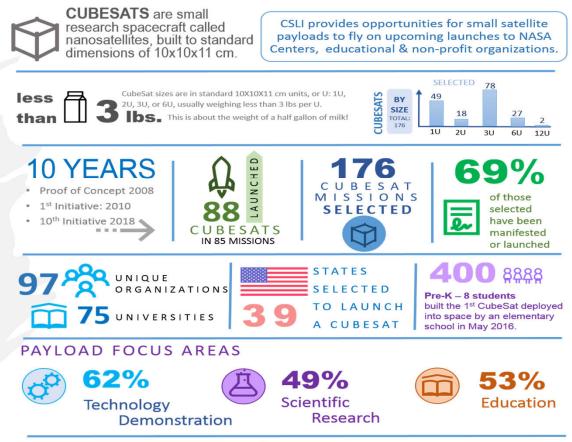
SABAHINIZ XEYIR! GOOD MORNING!

Design and Assembly of a COTS CubeSat for Space Weather Applications

M. Chantale Damas¹ & Yang He (Graduate Student)²

¹Queensborough Community College & ²The City College of New York of the City University of New York (CUNY)

> United Nations/Azerbaijan Workshop on the International Space Weather Initiative: The Sun, Space Weather and Geosphere 31 October – 4 November 2022 Baku, Azerbaijan


- I. Introduction
- II. CubeSat Project
- III. Challenges & Lessons Learned
- IV. Conclusions
- V. References & Acknowledgement
- VI. Questions

INTRODUCTION

Why CubeSats?

- During the past two decades, due to their relatively low cost and short production time, CubeSats have been developed for both educational and commercial use.
- Only a few universities have had the opportunity to engage students on actual CubeSat missions that were launched into space.
- Great opportunity to teach students about scientific missions and NASA.

NASA'S CUBESAT LAUNCH INITIATIVE (CSLI)

go.nasa.gov/CubeSat_initiative

Student-Led CubeSat Mission Project

The project aims at inspiring, as well as developing a community of students to pursue STEM careers through a challenging, engaging, exciting, and constructive project **that encourage problem solving**, **critical thinking**, **persistence and team work**.

Due to its low cost ($\sim <$ \$500) and replicability, this project serves as a model for other colleges interested in engaging undergraduate and high school students in CubeSat design and hardware, based solely on inexpensive commercially off-the-shelf (COTS) components

The City University of New York (CUNY)

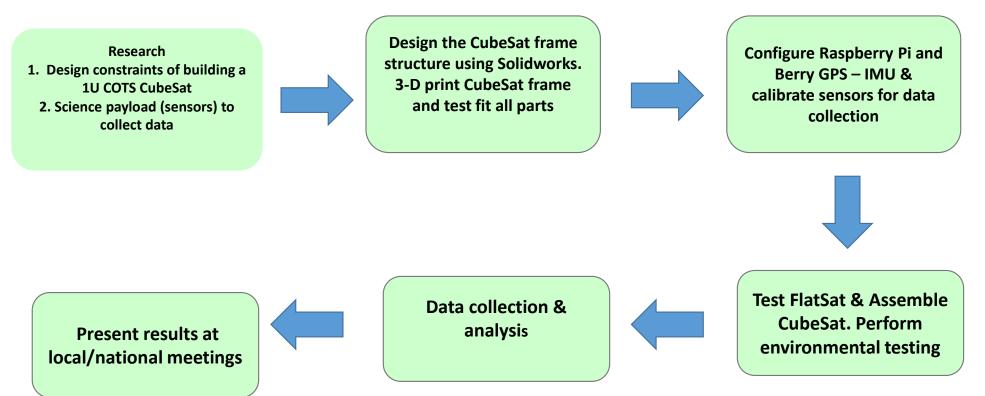
CUNY is USA's largest urban university and one of its most diverse.

CUNY, located in New York City, is USA's largest urban public university. It provides high-quality, accessible education for more than 269,000 degreecredit students and 274,000 adult, continuing and professional education students at 25 campuses across New York City.

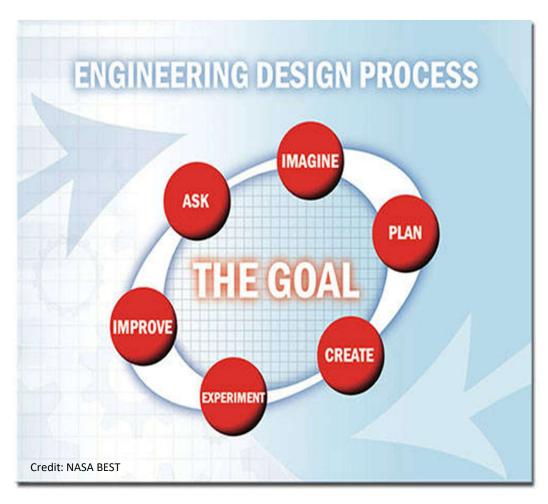
- 11 Senior Colleges
- 7 Community Colleges
- The Graduate School and University Center
- Macaulay Honors College
- CUNY Graduate School of Journalism
- CUNY School of Law at Queens College
- CUNY School of Professional Studies
- CUNY School of Public Health
- CUNY Medical School

QCC Students are...

- Diverse
- First-generation college students
- Immigrants
- Speak over 150 languages
- Part/Full-time workers
- Parents
- Academically diverse (some well-prepared; others math and science-challenged)


Space Science & Technology Curriculum

Item Purpose/Contribution						
Train Peer-Project Team Leaders	Contribute to course Lab Manual development & testing of equipment;	Fall				
(PPTLs)/Teaching Assistants (TAs)	tutorials; workshops; peer-mentoring					
<i>Course</i> ²	-Course activities foster a realistic environment for learning with	Spring				
	hands-on applications enabling students to continue and enhance					
	NASA CubeSat missions. course uses inexpensive commercially off-					
	the-shelf components (COTS) electronics.					
	-Introduction to CubeSat design practices					
	-Software simulation packages					
	-Assemble & test a Flatsat and CubeSat					
	-Operation/data collection & analysis					
Summer research internship ³	10-week research internship onsite at NASA GSFC to expand	Summer				
(Optional)	academic year experience					
Synergistic Activities	Recruitment, Mentoring, workshops & training; virtual community,	Year-long				
	etc.					


³ NASA campuses were closed during the pandemic and internships were remote.

Project Pathway

Students are given a challenge and worked in teams to :

Engineering Design Process: NASA Beginning Engineering, Science & Technology (BEST)

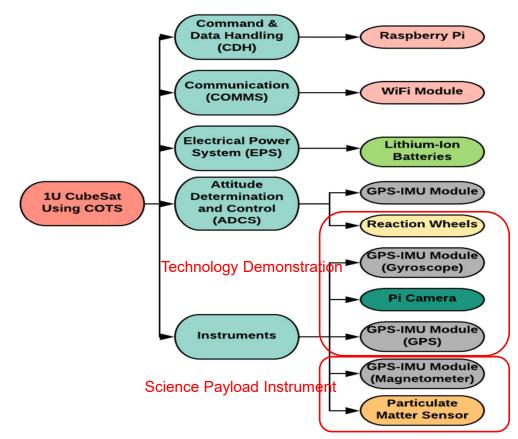
- ✓ Ask a question, what is the challenge ? Is it possible to build and design a low budget 1U CubeSat for scientific research & technology demonstration?
- ✓ Imagine a possible solution to the challenge. Use of COTS components and everyday household items are readily available and reduce budget.
- Plan out a design and draw your ideas.
 Develop science research question; research instruments payload (sensors); plan out design of CubeSat.
- ✓ Create and construct a working model. Construct FlatSat and CubeSat
- Experiment and test model. Test FlatSat and CubeSat
- ✓ Improve and try to revise model. Learn from failures and successes

Link:

https://www.nasa.gov/audience/foreducators/best/index.html

CubeSat Mission Project

To design experiments to test the scientific and technological capabilities of four COTS (Commercially-Off-the-Shelf) CubeSats prototypes on Earth CSCOTS TeMP Mission has the following:


1. Two Science payloads (Particulate Matter & onboard magnetometer sensors)

2. Technology demonstration of both navigation and communication systems

CubeSat Mission Project

- Project development has three main phases:
 - Phase 1: FlatSat development
 - Phase 2: FlightSat development
 - Phase 3: Data Collection
- Price tag < \$500.

Cubesat subsystem layout

Raspberry Pi 4

Reaction Wheels - 3D Printed

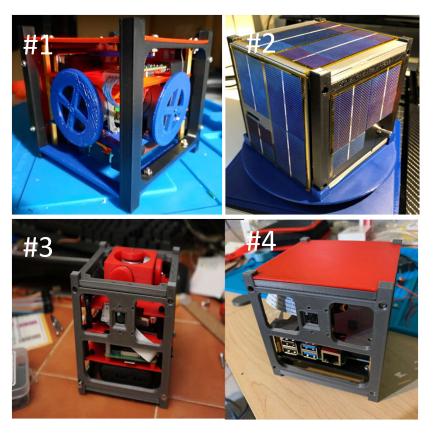
Berry GPS-IMU V3

SDS011 Particulate Matter Sensor

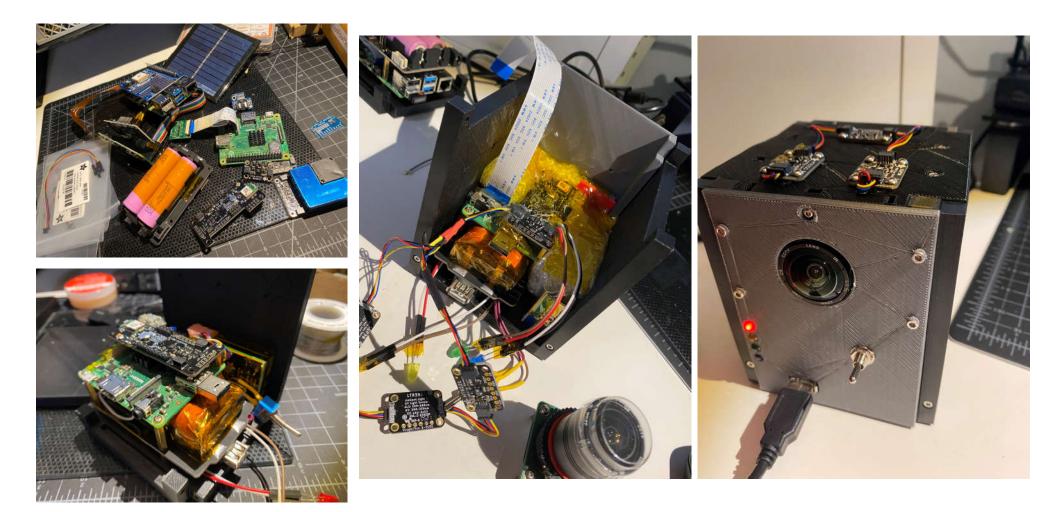
Raspberry Pi Camera Module V2

18650 Batteries

. Figure 1. Subsystem Chart


Project Development: Phase 1–FlatSat

Flatsat system


- ✓ Test components on a flat surface before CubetSat assembly
- ✓ Components are laid flat, then interconnected for power, commanding, and telemetry. Flatsat is used to test and troubleshoot systems without integrating everything onto the structure.
- ✓ Easy to test, diagnose, debug and change components

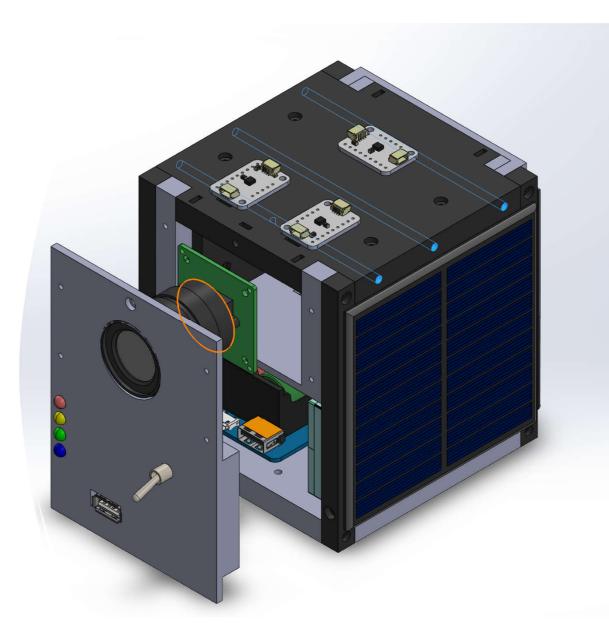
Project Development: Phase 2– FlightSat

Туре	Team	Engineering Technology Demonstrations, Primary Science Instructurments
#1	Hoon	Camera, Particulate Matter(PM) sensor
#2	Yang He	Reaction Wheel Dynamics, Magnetometer, GPS
#3	Brianna	Gyroscope, PM Sensor
#4	Tricia	Magnetometer, GPS

FlatSat & CubeSat Assembly

Controller and Sensors

- Raspberry Pi 3 A+
- Raspberry Pi HQ Camera
- BerryGPS-IMU V4
 - GPS
 - Accelerometer
 - Gyroscope
 - Magnetometer (Compass)
 - Barometric/Altitude
 - Temperature (inside)
- Particulate Matter (PM) Sensor
- UV Sensor
- CO₂ Sensor
- Ambient Humidity and Temperature Sensor


Environmental Stress Tests

CubeSats are subjected to "environmental' testing listed below:

Test type	Results									
	Passed	Failed	Comments							
Shock Test(Drop from 3 ft)	✓		All modules working correctly, minor signs of dent on structure frames							
Thermal Test (Cold, freezer)	\checkmark		All modules working correctly after the test							
Thermal Test (Hot, outdoors in car)	\checkmark		Frame distorted but all modules fully functional							
Vibration (Shake)	\checkmark		All modules are in position and working properly							

3D Modeling and Design Constraints

- 1U CubeSat (10*10*11.35cm)
- Extreme Environment
 - Ambient Temperature $\sim 98 \text{ F}$
 - Strong UV & Sun light
- Battery life > 3 hours
- Impact Forces
 - Hitting ground
 - Severe shaking
- COTS Material
 - 3D Printed plastic parts
 - Standardized Screws & Nuts

Project Development: Phase 3– Data Collection (& Results)

Science instrument: Onboard magnetometer

GPS GNUPLOT scatter graph 1

Camera Ground Test

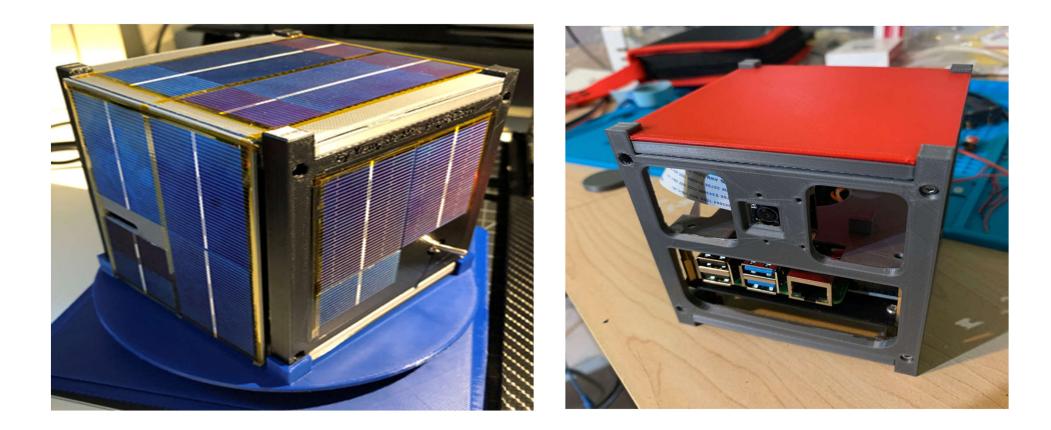
		2	0 1		U			,	IN .	L.	111	1.4	~	4	4	IN .	5		0		••	N.		-	1 1 1
GPStime	u System Tin	latitude	ongitude speed	d m/s sats in vie	evaltitude m	In_pressur li	n_temper UV	_raw Uv_	index lux	_cal A	mbient li _l Pa	articles > P	Particles > I	Particles > I	Particles > F	Particles > Part	icles >	Relative Hu	Ambient Tr Gx	G	iy Gz		magX nT	magY nT	magZ nT
	20210717-	40.72565	-73.8016 nan		7 0	1016.2	30.68	0	0	51.2	64	2967	937	178	20	6	6	77.41	29.96	0.03	-0.02	1.03	-69.6872	0.496931	-36.6121
2021-07-	1 20210717-	40.72564	-73.8016	0.694 2	2 60.2	1016.19	30.69	0	0	53.6	66	2889	914	176	20	6	6	77.5	29.96	0.04	-0.01	1.03	-68.9126	0.526162	-41.9176
2021-07-	1 20210717-	40.72563	-73.8016 (0.573 2	62.724	1016.2	30.71	0	0	48.8	61	2781	874	163	20	6	6	77.39	29.96	0.04	-0.02	1.03	-68.708	0	-40.8799
2021-07-	1 20210717-	40.72563	-73.8016	0.42 2	62.647	1016.24	30.74	0	0	92	136	2793	863	146	24	8	8	77.37	29.98	0.03	-0.02	1.03	-69.4534	0.190003	-36.3929
2021-07-	1 20210717-	40.72563	-73.8016 (0.247 2	62.484	1016.18	30.76	0	0	73.6	89	2793	863	146	24	8	8	77.38	29.96	0.19	0	1.03	-62.8179	1.227711	-37.5475
2021-07-	1 20210717-	40.72563	-73.8016	0.412 2	62.17	1016.18	30.75	0	0	57.6	53	2610	806	125	16	4	2	77.38	29.96	0.08	0.11	1.1	-67.2464	12.39404	-41.406
2021-07-	1 20210717-	40.72564	-73.8016 (0.288 2	60.774	1016.17	30.77	0	0	24.8	27	2529	783	131	16	4	2	77.28	29.96	-0.08	0.33	1.06	-68.8395	41.50833	-32.3736
2021-07-	1 20210717-	40.72563	-73.8016	0.873 2	60.506	1016.14	30.8	0	0	17.6	24	2382	735	119	14	4	2	77.13	30	-0.52	0.64	0.77	-78.3104	55.78778	-22.245
2021-07-	1 20210717-	40.72564	-72.8016 (511 - 2	50 655	1016.7	20.8	www.en	100 M	19	67	2225	716	0.0	10	5 M 10 M 10	averal y	77 19	20.06	20.61	0.22	0.77	-66.4426	44.57761	-48.6846
2021-07-	1 20210717-	40.72564		1. 1. 1.	S. Kast	2 N 343	Carlos and	Set Page	A CONTRACTOR		A. Harrison	1. 7°			No Car	1 15 11	24.	and the f		1.40	1	0.76	-65.3318	22.14265	-68.0064
	1 20210717-		and the second	NO PR	1. 100	の文を読	1 Carl				· · · · · · · · · · · · · · · · · · ·	and the	and the second	1	1. 1. 1	1. 19		25		2.72		0.83	-64.1771	45.03069	-57.8194
2021-07-	1 20210717-	40.72565		23 - 1 - N	Arcon		and the second	124	Constants	-	18 1 C	1243	3	44 (je)	-	4		1. 4 21		100	1. 2 1	0.83	-87.299	43.0722	-44.5484
2021-07-	1 20210717-	40.72565	Real Parts	Ser Viers				and the first	The Party	1 Sec	Ser.	C. Pra	4 A.	1	Contraction of the second	Seale and the	A Stand	B. And	Rope and		100	0.88	-73.8381	49.67846	-48.6115
2021-07-	1 20210717-	40.72565		3241 6	278-1	The way	11		1.		Service States		. 4.1	tip	Call in all		1	the the se	Service Services		1. 7 2	0.68	-55.2178	45.74686	-56.1824
2021-07-	1 20210717-	40.72565	6 6 6 6		Real Proves	18. 10	11		ALL ME		San Bar	100	- 17 I			Sec. March	1 .A.		R	5.0	5 4 6			19.33645	
2021-07-	1 20210717-	40.72566	A Jackson		NC ST	C IVA	a the second second		States"	1	1 Car	S. Som		a de s		Contraction of			1		1.6.4	0.68	-82.3443	8.798597	-46.9892
2021-07-	1 20210717-	40.72566		1. 11	1	Auge 1			-	and the		Pro Pa		1 Maria	通常 意	CONTRACTOR OF	1.5	True .	ANG			0.79	-84.639	-4.94008	-56.0362
2021-07-	1 20210717-	40.72567		C. S. S. S.		A CONTRACTOR	A Second	1	- Alter	1	NO - SA	7.10			1.50 200	A State	0.0	一般	1000 - 416		1 24 2	0.72	-81.4236	11.95557	-56.9716
2021-07-	1 20210717-	40.72567	the water	and the state				Sec.		Sec. 1			1.		1000	and the					1. 3. 34	0.91	-84.2151	12.89097	-56.9716
2021-07-	1 20210717-	40.72567				. 512	A CONTRACTOR	- U - U	ANT	42	To all a	1 an 1 a a		14 A	N State	· · · · · · · · · · · · · · · · · · ·				- 10 M	34 - San 1	1.07	-88.4683	19.59953	-48.9184
2021-07-	1 20210717-	40.72568	1	a No		1 1 1 1		Mar Property -	Plante 1	10	a e a	1	2 SA	1 1 1		100 123			A 1-51 1	1.19	A	0.71	-85.3844	15.90178	-53.4054
2021-07-	1 20210717-	40.72567	OF TALLAS		100 M					n d		These	and the set	T 2. 2					14 A 24	×	States.	0.88	-87.7083	8.798597	-49.7515
2021-07-	1 20210717-	40.72568	52.4 LE-	Sec. 1			1- 1- T-	Solan R	ALL DOP	4.4	2		CONSTRUCTION OF		-				11 12		C CAN	0.88	-80.2397	-5.78778	-60.0994
	1 20210717-		Martin		12		N	191 A	124	·			al- saine		123				-F-102	2.20 %	4.	0.78	-82.6367	8.827828	-62.131
2021-07-	1 20210717-	40.72568		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1		1. 1. 2. 2		to which		ALC: NO	Seat and	UN P						A CONTRACT	R	15	1.05	-89.6814	19.02952	-46.6238
	1 20210717-		- A.S.		Sec. Test of A	15	"我的你们	No.	4					44	eque 1		1	1		No.		0.96	-85.6767	14.76177	-33.2505
2021-07-	1 20210717-	40.72567	Sec. 18		ANT OTHER	Plant.	Selling a			1		8							In the second			1.03	-70.3011	12.33557	-41.5376
2021-07-	1 20210717-	40.72567	ALC: NO		10000	and the second second	- Start		Dent						1. 1.	100			- SAC			0.77	-72.5519	-13.8702	-35.0482
2021-07-	1 20210717-	40.72568			The state		Lines In	11.11			V- al		The AT		AF			- 20	a and			1	-70.6957	8.769366	-42.1222
2021-07-	1 20210717-	40.72568	and the state		制1025	ELE AN	Alt and a second						Sec. 11			-						1.01	-69.9503	8.38936	-47.033
2021-07-	1 20210717-	40.72567	1000									1 Un 2			20.00			3				1.01	-70.3888	7.936276	-42.7653
2021-07-	1 20210717-	40.72568			K I	- The state	1 Bener	-	-	Sec. 1								-	a diama de			1.01	-70.2426	7.848582	-46.4484
2021-07-	1 20210717-	40.72568		120 50		and the second	m					-								100		1.02	-68.9857	8.287051	-41.8299
2021-07-	1 20210717-	40.72568	2		de Alleri	Sec.					and the second								C.C. Specie	T-Property		1.01	-68.6495	7.775504	-46.3315
2021-07-	1 20210717-	40.72568		No. And Street		al and a second	-												and the second states of the	and the second second		1.01	-69.468	7.337036	-42.546
2021-07-	1 20210717-	40.72567																				1.01	-68.1526	8.213973	-46.0538
2021 07	1 20210717	10 77566																				1 01	60 1677	7 650570	16 5061

CHALLENGES AND LESSONS LEARNED

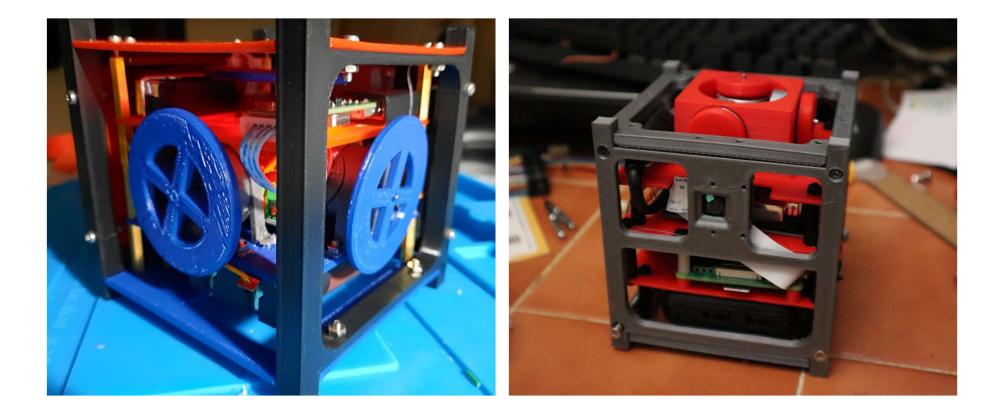
Challenges

- ✓ 3D design a challenge (learning new design software, high demand on computer resources)
- ✓ 3D printer errors causing pieces to either not align correctly or in some cases not fit at all.
- Use of COTS materials that may not be reliable (product heritage).
- Performing stress tests (not under well-controlled conditions)Funding!!!!

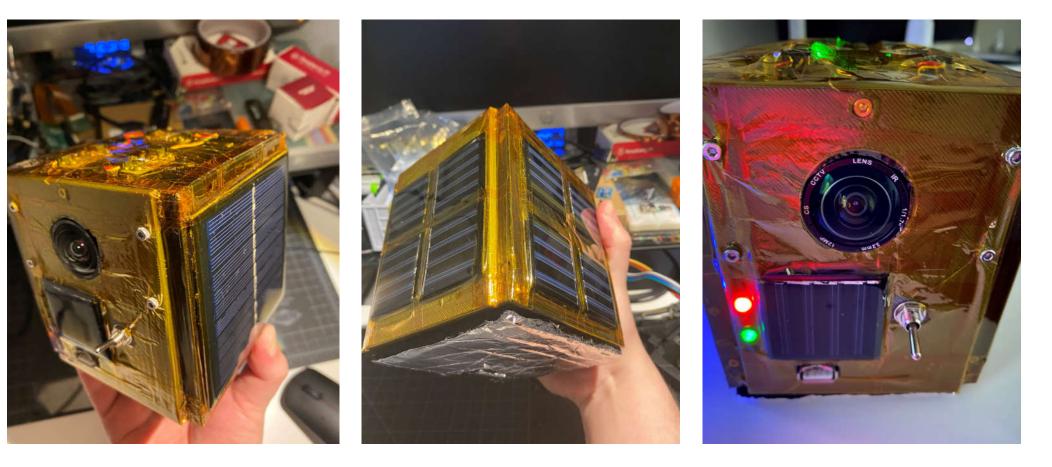
Challenges: COVID-19


- Everything moved online
- ✓ Students' home became labs
- Coordinating student time and availability to meet and work with instructor, TAs and teams.
- Shipped CubeSat kit to each student (costly)
- ✓ Working remotely as a team
- ✓ No access to NASA facilities
- ✓ Obtaining materials during the pandemic

Lessons Learned


- Seek out subject matter experts (scientists & engineers). For this project, we worked with NASA engineers.
- ✓ Train & make use of trained TAs
- ✓ Give students autonomy to decide how to organize and work on project with some guidance.
- ✓ DO NOT underestimate students' resourcefulness and willingness to work under pressure and as a team to undertake project they find interesting and worthwhile. True during COVID!!
- ✓ Students learned to work both independently and in teams. Increased confidence & self-efficacy

CONCLUSIONS


Student-built CubeSats – 1st Iteration

Student-built CubeSats – 1st Iteration

Successful CubeSat- 2nd Iteration (Launched via Balloon)

Successful CubeSat– 3rd Iteration (Launched via Balloon)

Poster presented at 2022 Small Satellite Conference Logan, Utah (virtual)

HAABSat mission uses a high-altitude air bolloon (HAAB) to launch a CubeSat (Sat) to an altitude (>00,000 ft). The 2U CubeSat is assembled with only commercial off-the-shelf (COTS) components, including the 3-D printed frames. The HAABSat system uses a high-quality latex worther balloon including a GPS tracker, and a COTS CubeSat as payload. A suite of sensors onboard the CubeSat measures several variables including temperature, pressure, humidity, UV, CO2, and other particulates in both the lower and upper atmosphere—The CubeSat also includes an coboard magnetometer, gyroscope, accelerometer, and GPS.

During the Jaunch, ascent and descent, an orboard wide-angle camera shoots high-resolution (4056 × 3040 pixels) photos of the ground and surface. Results of our data analysis is discussed, as well as the challenges and lessons learned during the design and launch. This low-cost and replicable student-led project has the potential to serve as a model for other universities interested in engaging undergraduate and high school students in all aspects of a CubeSat mission, with a future goal of launching into space.

CubeSat Design

The HAABSat system layout is presented in Table 1. The system contains a suite of sensors: a Particulate Matter (PM) sensor, CO2 Sensor and pressure sensor placed on the same side of the CubeSat body.

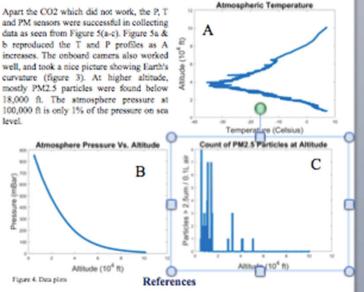
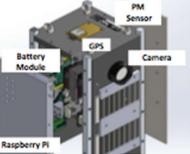

		and wap screws							
	Command	Raspberry Pi 4 Model B							
	and	128GB Micro SD Card							
	Data handling								
	Attitude	Accelerometer							
	Determinatio	Gyroscope							
	n	GPS .							
	and Control								
	Electric Power	Power Supply Module							
	System	4*18650 Li-ion Batteries							
		Solar Cells							
	Payload	Raspberry HQ Camera (Photo)							
		4K USB Camera (Video)							
	Sensors	PM Sensor							
		Magnetometer							
		Humidity Sensor							
		Pressure Sensor							
		Temperature Sensor							
		CO2 Sensor							

Table 1. HAABSat -3 System Layout


Collection Real-

Program from Laramie, Wyoming. (Figure 3) It reached an altitude of - 101,000 feet (27 kilometers) above sea level, well into the stratosphere, by a helium-filled balloon. The recovery can be hampered by jet stream winds, which can carry balloons as far as 100 miles away or more depending on the season (stronger in winter). The final HAABSat-2 was found 66 miles away from its original site.

Results

Solar Cells

REFERENCES & ACKNOWLEDGMENT

References

Adams N. E. (2015). Bloom's taxonomy of cognitive learning objectives. Journal of the Medical Library Association : JMLA, 103(3), 152-3.

American Association of Community Colleges (2018). Trends in Community Colleges Retrieved from <u>http://www.aacc.nche.edu/AboutCC/Trends/Pages/default.aspx</u>.

CubeSat Design Specification (CDS) REV 13, The CubeSat Program, Cal Poly SLO

Damas, M. C., Ngwira, C. M., Cheung, T. D., Marchese, P., Kuznetsova, M., Zheng, Y., et al. (2020). A model of an integrated research and education program in space weather at a community college. Space Weather, 18, e2019SW002307. https://doi.org/10.1029/2019SW002307

He, Y., Damas, MC. 2021. "A Raspberry PI Powered 1U CubeSat," Proceedings of the AIAA/USU Conference on Small Satellites, Mission Operations and Autonomy, SSC21-XXI-1. <u>https://digitalcommons.usu.edu/smallsat/2021/all2021/282/</u>.

NASA (2022), Engineering Design Process: BEST<u>https://www.nasa.gov/audience/foreducators/best/edp.html</u>

Nugent, R., R. Munakata, A. Chin, R. Coelho, J. Puig-Suari (2008) The CubeSat: The Picosatellite for Research and Education, AIAA Space 2008 Conference and Exposition, 9-11 September 2008, San Diego CA

Poghosyan A. and A. Golkar (2017) CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions, Progress in Aerospace Sciences, 88(2017) pp. 59-83.

Acknowledgement

This work was funded by a grant from the NASA MUREP Innovations in Space technology Curriculum Group 2 (MISCT-2) under NASA award number 80NSSC19M0221.

Dr. M. Chantale Damas gratefully acknowledges Dr. Sean Semper of the NASA Goddard Space Flight Center MESA

Her Teaching Assistants: **Yang He**, Seughoon (Hoon) Kim and Brianna Solano!

Her many wonderful and hard working students!

She also acknowledges travel funds from QCC's Office of Academic Affairs & Physics Department.

ÇOX SAĞ OL! THANK YOU!

QUESTIONS?