

MONITORING AND ESTIMATION OF GAS FLARING PHYSICAL PARAMETERS BY VIIRS NtL REMOTE SENSING DATA, CASE OF ALGERIA

Agence Spatiale Algérienne, Centre des Techniques Spatiales, Arzew, Algérie {fbenharrats, abouhlala, fbenhalouche, skaroui}@cts.asal.dz

Outline

- Introduction
- Used data & Study area
- Considered Method
- Obtained Results
- Conclusion

Launched in **2015**, the **Zero Routine Flaring** (ZRF) initiative commits governments and oil companies, to end routine flaring no later than **2030**.

The World Bank Group

Seeking a world **free of routine gas flaring** and venting.

GGFR Partnership Charter

Source : NOAA, GGFR - 2020

Used Data & Study Area

Considered Method

Obtained Results

VIIRS (VIsible/Infrared Imager Radiometer Suite)

Multispectral Sensor

On board the polar-orbiting Suomi National Polar-orbiting Partnership (Suomi NPP) and NOAA-20 weather satellite.

Collect data in 22 different spectral bands of the electromagnetic spectrum.

SDR (Sensor Data Records) preprocessing level or Level-1B.

Band	Spectral Range	Bandpass	Band Center
Designation		(µm)	(μm)
DNB	Panchromatic	0.5-0.9	0.7
M7	Near infrared	0.843-0.881	0.862
M8	Near infrared	1.225-1.252	1.2385
M10	Short-wave IR	1.571-1.631	1.601
M12	Mid-wave IR	3.598-3.791	3.6945
M13	Mid-wave IR	3.987-4.145	4.066
M14	Long-wave IR	8.407-8.748	8.5775
M15	Long-wave IR	10.234-11.248	10.741
M16	Long-wave IR	11.405-12.322	11.865

Study area

Considered Method

Used Data & Study Area

Obtained Results

Oil installation equipped with a flare burning the not-exploited associated gases.

Data covers the southern region of Algeria and the considered flare FIT-M8-101A-1U (Berkine basin, Hassi Messaoud, Algeria).

Flare detection

Used Data & Study Area

Considered Method

Obtained Results

Used Data & Study Area

Considered Method

Obtained Results

Planck's law

Where :

Describes the electromagnetic radiation emitted by a black body in thermal equilibrium at a definite

c: speed of light in the void (3×10⁸ m.s⁻¹)

- *h* : Planck constant (6,625 10^{-34} J.s)
- *k* : Boltzmann constant (1,38 10⁻²³ J.K⁻¹)
- *T* : Black-body temperature in Kelvin

Wien's displacement law

Considered Method Used to derive the temp

Obtained Results

Used Data & Study Area

Used to derive the temperature for a corresponding wavelength of peak emission :

Used Data & Study Area

Considered Method

Obtained Results

Planck curve fitting

The fitting outputs are estimates of a temperature and an emissivity value of the hot source present in a given pixel.

Used Data & Study Area

Considered Method

Obtained Results

Radiant Heat estimation

Applying the Stefan-Boltzmann's law :

 $RH = \sigma T^4 S$

Where :

- σ : Stefan-Boltzmann constant (5,67 10⁻⁸ J.K⁻⁴.m⁻².s⁻¹)
- *T* : Black-body temperature in Kelvin

Estimated parameters

Planck curve fit estimated parameters :

Obtained Results

Considered Method

Used Data & Study Area

	Proposed Approach		
T (Kelvin)	1668.7		
٤	1.3970×10 ⁻⁵		
A (m²)	1 417 838.3112		
S (m²)	13.3084		
RH (MW)	5.8509		

The established intercepting zero "third-order" polynomial regression model, using all dates of the two months of October and November 2021, by means of the proposed approach and the provided "hourly" in-situ flaring gas volumes.

Used Data & Study Area Obtained results by means of the established intercepting zero "third-order" polynomial regression model using the two months of October and November 2021: **Considered Method** 6.5982×10⁻⁷ α_{h_1} Hourly regression coefficients α_h - 2.7400×10⁻⁸ α_{h_2} **Obtained Results** 4.8962×10⁻¹⁰ α_{h_3} 1.5835×10⁻⁵ α_{d_1} Daily regression coefficients $\alpha_d = 24 \times \alpha_h$ -6.5760×10⁻⁷ α_{d_2} 1.1751×10⁻⁸ α_{d_3} 5.7838×10⁻³ α_{a_1} Annual regression coefficients $\alpha_a = 24 \times 365.25 \times \alpha_h$ -2.4020×10⁻⁴ α_{a_2} 4.2920×10⁻⁶ α_{a_3} 0.9763 Determination coefficient RHourly $RMSE_{Volume}$ (October and November 2021) in BCM 2.6614×10⁻⁶ Daily *RMSE*_{Volume} (October and November 2021) in BCM 3.2309×10⁻⁴ Daily $RMSE_{Volume}$ (considered 156 dates of 2020) in BCM 5.2423×10⁻⁵

Used Data & Study Area

Considered Method

Obtained Results

Estimated annual 2021 flared gas volumes (in BCM×10⁻³) for the considered FIT-M8-101A-1U flare :

Method	Proposed Approach	Cedigaz
Estimated volume	33.0743	255.3538
Measured volume		67.6293
Estimation error	34.5550	187.7245

Proposed Approach Estimated volume V ≈ 2 BCM Cedigaz Estimated volume V ≈ 11 BCM

Conclusion

- In this work, the parameters of a flare, located in a southern region of Algeria, are estimated, by means of, publicly available, NtL VIIRS remote sensing data, using a new proposed approach.
- This designed approach consists, principally, in deriving, from considered remote sensing data, pure flare flame spectrum and its abundance fraction that are, then, employed by physical law equations, in order to estimate flare physical parameters.
- These investigations were carried out by considering the provided daily and hourly in-situ flaring gas volume measurements, in order to estimate flared gas volumes during 2020- and 2021-year periods.
- The obtained results show the overall superiority of the designed approach, in terms of flared gas volume estimations, as compared with estimations achieved by using the Cedigaz regression coefficient.

Thank you for your attention