Climate Change and Adaptation: Sustainable Water Management

Subimal Ghosh Interdisciplinary Program in Climate Studies IIT Bombay

Food-Energy-Water in a Changing Scenario

Increasing groundwater depth in Gangetic Basin

Solutions

- More crop per drop or More nutrition per drop
 - Switching flood to drip irrigation
 - Improved irrigation water management
 - Participatory framework targeting the most vulnerable farmers

Major Crop Practice in India

- Irrigation affects water and energy cycle
- Land surface modelling must include

irrigation

Existing coupled models- demand driven

irrigation with generic crop

- India-uncontrolled irrigation
- Paddy primary crop-submerged crop-water

and energy balance mechanisms different

VIC-AMBHAS-IRR model

Forward-difference two-dimensional, one-layer groundwater model with governing equation:

$$\frac{\partial}{\partial x} \left(T \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(T \frac{\partial h}{\partial y} \right) = S_y \frac{\partial h}{\partial t} - q_r + q_p + q_b$$

Where: h=hydraulic head, T = aquifer transmissivity, S =aquifer storage coefficient, q_r =groundwater recharge, q_p =groundwater pumping, q_p =baseflow to rivers

- aquifer is isotropic, can be heterogeneous
- T recalculated at each time-step as the saturated aquifer thickness varies, according to:

 $T = K \left(h - z_{base} \right)$

where K=hydraulic conductivity, and z_{base} =

elevation of the base of the aquifer

Joseph et al. (2022), ERL (revision)

Paddy Formulation

Concept from SWAT (Xie and Cui, 2011), MATCRO rice (Masutomi et al., 2016), Devanand et al. 2019

Energy Balance: 1) $R_n = H + LE + G + S_{tw}$

Where : $S_{tw} = c_{pw} \rho_w d_w \frac{\partial T_s}{\partial t}$

 S_{tw} =heat flux stored in surface water,

 c_{pw} =specific heat of water, ρ_w =density of water,

 d_w =depth of water, T_s =surface temperature

2) Surface albedo: soil albedo replaced with

Water Balance:

1) Evaporation-soil evaporation replaced with open water evaporation

 $E = E_{canopy} + E_{transpiration} + E_w$

2) Seepage-

 $Q_{12} = 0.1\% \ of \ Q_{12,max}$

 Q_{12} is the seepage from layer1 to layer2

Field tilling creates low permeability layer beneath the field, which cannot infiltrate at the maximum capacity

3) Overbund flow-

$$R_{over} = (h_t - h_{max})/\Delta t , h_t > h_{max}$$

$$R_{over} = 0 , h_t \leq h_{max}$$
is considered to be 300mm (Misbra et al. 2007)

 h_{max} is considered to be 300mm (Mishra et al. 2007)

4) Ponded depth-

 h_t is the ponded depth at time step t

$$\Delta h_w = (P + irrig - E_w - \text{infilt}). \Delta t$$

$$h_{t+1} = h_t + \Delta h_w \quad \text{,if } h_{t+1} < 0 \text{ set } h_{t+1} = 0$$

albedo of water

Model Performances

Evaluation of Model Performance

Depth to GW simulated from flood, intermittent and drip irrigation

Irrigation water management

Extending with ERPAS

Water Savings and Maintaining RY

Site 1

Changes in RY (a, c, e and g) and savings in irrigation water use (b, d, f and h) w.r.t. the farmer's method of irrigation scheduling, using the proposed framework with extended range forecast for $(t+1)^{th}$ to $(t+7)^{th}$ day, $(t+8)^{th}$ to $(t+14)^{th}$ day and $(t+15)^{th}$ to $(t+21)^{th}$ day reliability factor value (α): 0.95 in (a) and (b), 0.85 in (c) and (d), 0.75 in (e) and (f), 0.5 in (g) and (h).

Roy et al. (2022), Climate Services

Upscaling over a large region

Satellite Observations

Soil Moisture Prediction at Sites

- Site 1 and Site 2 (S1 and S2) considered as "base sites". Sites with similar soil types were taken as "test sites" → Site No. 6, 11, 14, 21 (S1*) and Site No. 15 (S2*)
- All these predictors: (LST, EVI, NDVI, Temperature, Precipitation, Background RZSM data scaled from RS observed SSM products) are extracted for the test sites
- \circ Long Short-Term Memory model (LSTM) predict the RZSM with these predictors
- Observed datasets for soil moisture is used to train the model

Station No.	s _w	s _h	s _{fc}	s*	n	Z_r	Ks	β	SWR	Soil Type	%Clay
Site 1	0.3	0.24	0.75	0.45	0.28	450	400	18	164	Clay Loam	35
Site 2	0.25	0.20	0.65	0.35	0.56	400	800	11	152	Sandy loam	30
6	0.28	0.195	0.65	0.5	0.36	400	400	16	150	Clay Loam	30
11	0.28	0.195	0.65	0.5	0.36	400	400	16	162	Clay Loam	40
14	0.28	0.195	0.78	0.5	0.3	400	600	18	157	Clay	55
15	0.3	0.21	0.68	0.4	0.45	400	750	12	154	Sandy Clay Loam	30
21	0.28	0.195	0.78	0.5	0.3	400	600	18	156	Clay Loam	30

Water Savings and Change in Yield

S6

S15

Thank You