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Solutions

* More crop per drop or More nutrition per drop
* Switching flood to drip irrigation
* Improved irrigation water management
 Participatory framework targeting the most vulnerable farmers



Major Crop Practice in India
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Irrigation affects water and energy cycle
Land surface modelling must include
irrigation

Existing coupled models- demand driven
irrigation with generic crop
India-uncontrolled irrigation

Paddy primary crop-submerged crop-water

and energy balance mechanisms different
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Forward-difference two-dimensional, one-layer groundwater

model with governing equation:

0 Tah N 0
dx\ Ox dy

oh oh

T—)=5,—
dy Y ot

_CIT+CI'p+qb

Where: h=hydraulic head, T = aquifer transmissivity,
S =aquifer storage coefficient, q, =groundwater recharge, q,
=groundwater pumping, g, =baseflow to rivers
- aquifer is isotropic, can be heterogeneous
- Trecalculated at each time-step as the saturated aquifer

thickness varies, according to:
T =K (h — zZpgse)
where K=hydraulic conductivity, and zj ;.=

elevation of the base of the aquifer

Joseph et al. (2022), ERL (revision)



Paddy Formulation

Concept from SWAT (Xie and Cui, 2011),MATCRO rice (Masutomi et al., 2016), Devanand et al. 2019

cano + ransp. P
Ecanopy+Etransp I Water Balance:

1) Evaporation-soil evaporation replaced with open water evaporation

Irrig E.

E = Ecanopy + Etranspiration"' Ew
2) Seepage-
Q12 = 0.1% of Q12max

Q12 is the seepage from layerl to layer2

Field tilling creates low permeability layer beneath the field, which cannot infiltrate

at the maximum capacit
Energy Balance: pactty

1) R, = H+ LE + G+S,y, 3) Overbund flow-

Where : S;,, = prpwdw% Rover = (he=hmax) /AL e > Mnax
Roper =0 vhe < Apax

Stw=heat flux stored in surface water, Rinax is considered to be 300mm (Mishra et al. 2007)

cpw=specific heat of water, p,,=density of water, 4) Ponded depth-

_ _ h;is the ponded depth at time step t
d,,=depth of water, T;=surface temperature Ahy, = (P + irrig — E,, — infilt). At
2) Surface albedo: soil albedo replaced with h¢y1= hetAh,y, Jif hpp1<0set hyyq1=0

albedo of water 6



Model Performances
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Depth to GW simulated from flood, intermittent and drip irrigation



Irrigation water management

.Decadal to

. multi-decadal
Seasonal projections:
Predictions (Crop
(suitable crop allocation for
Qended Range: 2-4 for season) water and
Weeks ( Irrigation food security)
water Arrangements)

Optimization Model
Objective: Minimize Water use
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P(Root Zone Soil Mositure <= Water
Photo (field) Credits: http:/ /news.mit.edy/2017/design-cuts-costs-energy-drip-irr 0420 Stress Threshold)=a (say 0.95)

and https://r h s.in/news /bett I e-sensors-usi h ide

to be applied
Vot T

Saves 10-30% water with
no loss in the yield
Patentfiled; Roy et al.
(2021), WRR




Extending with ERPAS

Decision Variable (Irrigation Water) Search Space I
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Search based Optimization
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Water Savings and Maintaining RY

M 14 to 21 days [ 14 to 21 days
R4bi 07 to 14 days 07 to 14 days
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Changes in RY (a, c, e and g) and savings in irrigation water use (b, d, f and h) w.r.t. the farmer’s method
of irrigation scheduling, using the proposed framework with extended range forecast for (t+1)" to (t+7)t

day, (t+8)™ to (t+14)t day and (t+15)™ to (t+21)" day

reliability factor value (a): 0.95 in (a) and (b), 0.85 1n (¢) and (d), 0.75 1n (e) and (f), 0.5 in (g) and (h).

Roy et al. (2022), Climate Services
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Upscaling over a large region

Satellite Observations
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Different soil types moisture sensor
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Farms with Weather Forecast

In-situ information
soil moisture
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simulation-optimization
framework



Soil Moisture Prediction at Sites

O

Site 1 and Site 2 (S1 and S2) — considered as “base sites”. Sites with similar soil types were taken as “test
sites” = Site No. 6, 11, 14, 21 (S1*) and Site No. 15 (S2%*)

All these predictors: (LST, EVI, NDVI, Temperature, Precipitation, Background RZSM data scaled
from RS observed SSM products) are extracted for the test sites

Long Short-Term Memory model (LSTM) — predict the RZSM with these predictors

Observed datasets for soil moisture is used to train the model

Station

N S Sh | Sfe | 5T n | Z, | K, | f | SWR Saoil Tvpe 2oClay

0.

Site1 | 03 | 024 [075] 045 | 028|450 400] 18| 164 | Clay Loam 35

Site2 | 025 | 020 [ 065] 035 | 056(400[800] 11| 152 | Sandy loam 30 .
6 |028[0195/065| 05 |036]400[400]16[ 150 | Clay Loam 30

11 [ 028[0195[065] 05 [036[400[400[ 16| 162 | Clay Loam 40

14 [ 0280195 078] 05 | 03 [400]600] 18] 157 Clay 55

15 | 03 | 021 |068| 04 |045| 400|750 | 12| 154 | SandyClay 30

Loam
21 [ 028[0195(078] 05 | 03 [400[600[ 18] 156 | Clay Loam 30 .
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