

ESA Clean Space Presentation

ESA Clean Space Team UNOOSA Austria Symposium – Panel 1

14/09/2022

Clean Space

ecodesign

→ REDUCING IMPACTS

Effect on the atmosphere o Discharge energy Environmental regulation o Deorbit Life cycle assessment ∘clean space Design for demise Design for servicing Reentry in-orbit Capture o Rendezvous servicing

EcoDesign Scope

Is necessary to understand how much space activities pollute on Earth and to identify alternatives to reduce the environmental impacts

LCA (Life Cycle Assessment)

Assessing the environmental impacts of the whole life cycle of the space missions

Eco-design

Identifying alternative processes or technologies that can be used to reduce these impacts

Environmental regulation

Finding alternatives to abide by legislations and avoid costly disruptions

Life Cycle Assessment – Definition

LCA is an ISO-standardised tool to quantitatively assess the potential environmental impacts of product, process or service

✓ Multi-step analysis

The environmental impacts are assessed across all stages of existence.

✓ Multi-criteria analysis

The outcomes are expressed with several quantified environmental indicators (impact categories).

Space Mission Life Cycle

USE

ESA's eco-design vision

→ GREEN TECHNOLOGIES

Environmental Footprint

Ex: Efficient use of Ge

Environmental Regulation

Ex: Replacement of pyrotechnic powders

→ ESA PROJECTS

- Ariane 6
- Earth Explorer 9
- Copernicus Missions
- Galileo 2nd generation
-

ROADMAP

→ THE EUROPEAN SPACE AGENCY

Let's stay in touch!

Back up slides

11

ESA Agenda 2025

reiterated that making ESA "a greener organisation" is a priority, to support the implementation of the Paris Agreement and the European Green Deal to the fullest extent

Current orbital environment

36 500 objects greater than 10 cm

1 million objects from 1 cm to 10 cm

Design for Demise

1.5

Zero Debris Approach

Zero Debris Approach requires transversal action - the 4 pillars:

1. Evolution of ESA Policy

Introduce a requirement for removal in case a spacecraft fails

2. Upgrade platforms

System level development and integration of innovative technology

3. Removal services

Demonstrate reliable services, establish standard interfaces

4. Improving operations

Expanding monitoring and operational capabilities