

Real-Time Monitoring of Tropical Deforestation

Stéphane MERMOZ

Thierry KOLECK

To provide weekly forest loss maps at fine resolution with a low latency at global scale, in the frame of the TropiSCO project

The TropiSCO project is part of the Space Climate Observatory program

What for ?

- For companies who want to prove that their supply chains are deforestation-free, complying with the certifications to which they have committed
- Crucial to the requirements in UNFCCC REDD+, the primary policy supporting financial incentives to developing countries to minimise deforestation
- For tracking illegal activities in protected areas, logging exploitation

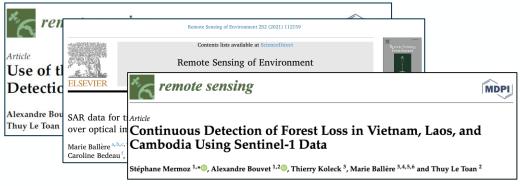
www.spaceclimateobservatory.org

Method

for

Based on radar Sentinel-1 data from the Copernicus program, which allows for

the development of an operational system, whatever the weather conditions


The method has been developed for many years

Processing

Continuous and automatic processing hosted on CNES HPC

Every day, the fully automated TropiSCO processor allows to

- process new Sentinel-1 images
- detect forest losses
- update the forest loss maps and statistics
- transfer products to webGIS

Specificities of the TropiSCO alert system

- Processing on national computing resources
- Work with local organizations: AGEOS in Gabon, VNSC in Vietnam, INPE in Brazil
- Development of joint methods INPE/CNES to be integrated in the operational Brazilian alert system
- Use of specific input data adapted to local forest definitions
- Carbon losses assessment
- Dedicated online platform

Phase 1 of the TropiSCO project

Phase 1: Demonstration architecture stu		Phase 2: Production and new developments	
oct. 2021 apr. 2022			

lser requirements Questionnaire Demonstration: Maps production and webGIS development Data Architecture: Trade-off on technical solutions for operationnal processing

- Users requirements synthesis
- Production on 7 countries (Guiana shield, South-East Asia and Gabon) since 2018
- WebGIS development and validation
- Processing and cost estimation for phase 2

Phase 1 of the TropiSCO project

Phase 1: Demonstration and architecture studies	Phase 2 : Production and ne developments	
ct. 2021	apr. 2022	202

Phase 2 of the TropiSCO project

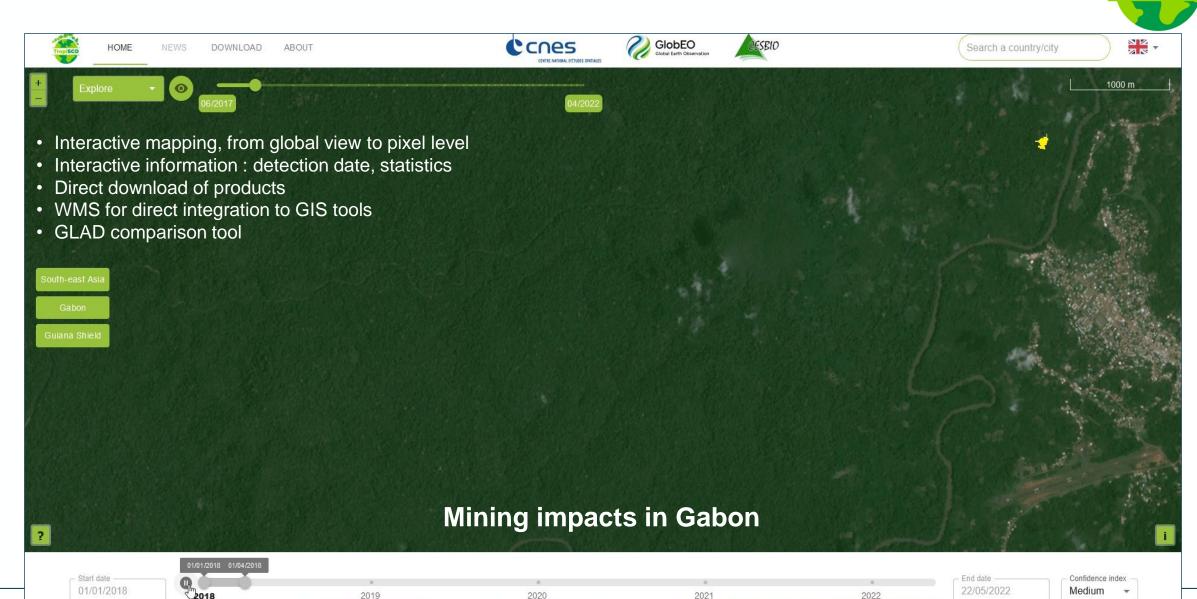
Phase 2 of the TropiSCO project

	Phase 1: Demonstration architecture s		Phase 2: Production and new developments	
Phase 2 Roadmap:	oct. 2021	apr. 20	apr. 2022	

2022:

- Carbon loss maps
- Extension to Congo basin forests
- Collaboration with INPE for implementing the new Brazilina alert system

2023:


- Extension to Amazonia and Asia
- Detection improvement using additional EO data
- Decrease of the size of detectable forest losses (from 0.1ha to 0.02ha)

Parallel activities

Extension to tropical dry and temperate forests

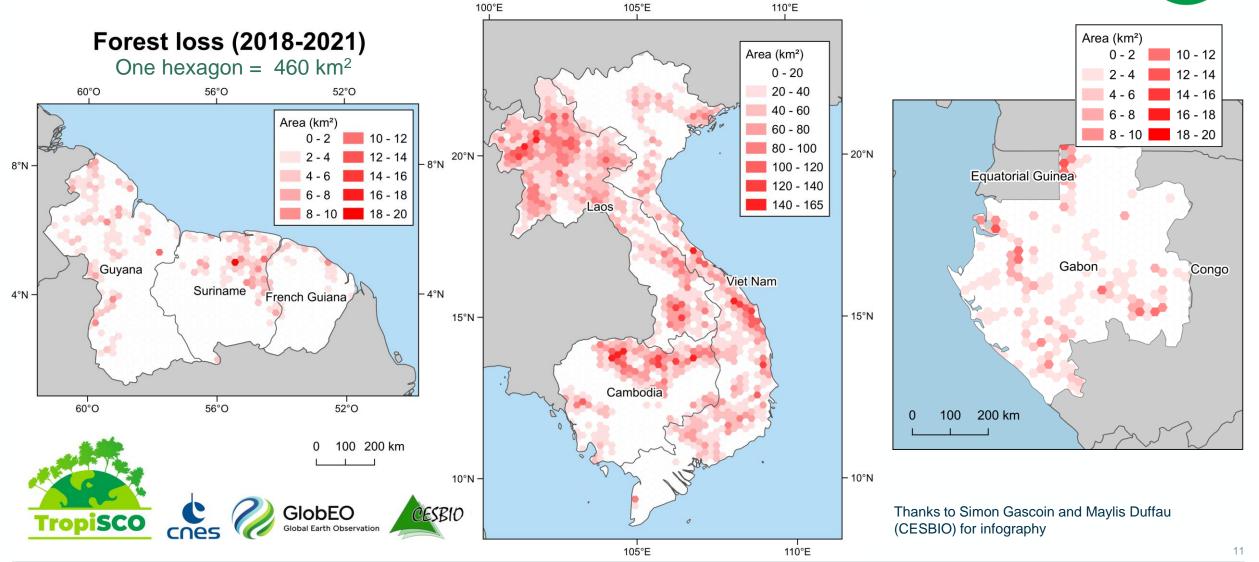
The TropiSCO webGIS

www.tropisco.org

opiSCC

The TropiSCO webGIS

www.tropisco.org



10

Forest loss synthesis

Contacts and references

www.tropisco.org

info@tropisco.org mermoz@globeo.net

Mermoz et al. (2021). Continuous Detection of Forest Loss in Vietnam, Laos, and Cambodia Using Sentinel-1 Data. Remote Sensing, 13(23), 4877. <u>https://doi.org/10.3390/rs13234877</u>

Ballère et al. (2021). SAR data for tropical forest disturbance alerts in French Guiana: benefit over optical imagery. Remote Sensing of Environment, 252, 112159. <u>https://doi.org/10.1016/j.rse.2020.112159</u>

Bouvet et al. (2018). Use of the SAR shadowing effect for deforestation detection with Sentinel-1 time series. Remote Sensing, 10(8), 1250. <u>https://doi.org/10.3390/rs10081250</u>