UNITED NATIONS/AUSTRIA SYMPOSIUM

Space for climate action(13-15 September, 2022)

School of Resources and Geosciences

OpenGCS (Geological CO₂ Sequestration) Online Monitoring Platform

Hui Yang^{1,*}, Yina Qiao¹, Xiang Ru¹, Gefei Feng², Bing Zhang³, Hui Xu⁴, Hui Ci¹, Ran Wang¹, Zhaojin Yan¹

¹China University of Mining and Technology, Xuzhou, China

- ²Jiangsu Normal University, Xuzhou, China
- ³China United Coalbed Methane Co., Ltd, Beijing, China
- ⁴Jiangsu Institute of Geology and Mineral Resources Design, Xuzhou, China

*Correspondence: <u>huiyang@cumt.edu.cn;</u> +8615162138990, https://orcid.org/0000-0001-9421-3573

Introduction

Geologic Carbon Sequestration (GCS) is on the one hand an effective way to realize the GHG storage, and on the other to improve oil and gas production.

annis Ad	Gas to domestic supply	And the second s	Coal mass		the second
	Natural gas + CO, capture	Gas		Cement / steel / refineries etc.	Tothemical lants
CO, geok storag	ogical e Industrial uses				
		CO, geologica storage		Ocean storage (Ship or pipeline)	

GCS captures the CO₂ emissions from large point sources and transports and stores it in relatively geological structures or oceans for a long time. It is one of the effective technologies significantly global reduce to emissions into the climate system.

Distribution of GCS projects in the world

Pilot Test of CO2 Injection

- China's GCS projects started late, and there are few typical CO₂ geological storage demonstration projects in operation at this stage.
- Since 2011, the pilot test of CO₂ injection in Shizhuang North Block in Southern Qinshui Basin has been carried out by China United Coalbed Methane Co., Ltd.
- The goal is to provide free and open access to real-time monitoring data and long-term observations of GCS.

Southern Qinshui Basin-China

- Qinshui Basin is located in Qinshui County, Jincheng City, Southeast of Shanxi Province.
 It is west of Taihang mountain, east of Huo mountain, south of Xiakou Town, and south of Shanxi and Henan Province.
- Qinshui Basin is an important coalbed methane exploration area in China which is a compound syncline.
- In order to assure project performance, monitoring techniques need to be deployed to track CO₂ plume migration, assess leakage risk, and guard against environmental hazards.

Key technologies of GCS Online Monitoring

Key technologies of GCS Online Monitoring

1 Global Monitoring

Spatio-temperal distribution of CO₂ concentrations

Online aggregation of real-time monitoring data and diffusion migration model

• To study the potential of the combination of high-resolution in situ surface and aircraft measurements for validating AIRS observations.

• To inter-compare with GAW, HIPPO, with reference to the TCCON from near surface level to mid-to-high troposphere.

• To analyze the spatial distribution, rising trend and seasonal variation using monthly averaged AIRS observations.

3 Regine Monitoring

Optimization design of nearsurface monitoring network

Optimizing Sensor Network Node Location in Geological CO₂ Storage Area

- To analyze geological, geographical and meteorological data in GSC area.
- To design different coverage control schemes of monitoring sensor network nodes.
- To intensively or sparsely arrange sensor nodes based on Delaunay triangulation.

2 Local Monitoring

Surface environmental information monitoring

Develop CO₂ monitoring instrument based on WSN

• To develop a remote real-time online surface environmental information monitoring instrument for surface CO₂ concentrations based on the Internet of Things technology.

• To design and develop a visual monitoring platform for GCS leakage based on cloud computing.

OpenGCS Online Monitoring - Global Monitoring

Spatial distribution and temporal variation of global CO₂ observations

CO₂ observations retrieved by Atmospheric Infrared Sounder (AIRS) were inter-compared with Global Atmosphere Watch Programme (GAW) and HIAPER Pole-to-Pole Observations (HIPPO), with reference to the calibration data obtained using the high-resolution ground based Fourier Transform Spectrometers (g-b FTS) in the Total Carbon Column Observing Network (TCCON) from near surface level to mid-to-high troposphere.

Technical connotation: To evaluate the long-term trends of the total CO_2 column concentrations, we inter-compared the mid-to-upper tropospheric CO_2 data from AIRS, TCCON and GAW of high accuracy for the period from January 2007 to December 2013. The study results prove the potential of AIRS satellite observations for monitoring and analyzing mid-tropospheric CO_2 concentration at global scales, which will provide new insights into more accurate, sufficient, stable and continuous XCO_2 observations.

OpenGCS Online Monitoring - Global Monitoring

Super-resolution reconstruction of GOSAT using SRCNN

OpenGCS Online Monitoring - Global Monitoring

Data type	Effective pixels	ME	MAE	RMSE
GOSAT raw data (2.5°)	5616	1.274	1.574	1.864
Bicubic interpolation reconstruction results (0.5°)	131185	1.335	1.608	1.892
SRCNN reconstruction results (0.5°)	119905	0.041	1.082	1.357

The reconstruction results of bicubic interpolation can maintain the average accuracy of the original data, and the reconstruction results of SRCNN have a high accuracy, with 0.5 PPMV accuracy improvement.

In January, the error spatial distribution of SRCNN reconstruction results is shown in Figure B, where the improved CO₂ accuracy is mainly distributed in the southern hemisphere, while the improved accuracy is less in the Northern hemisphere, which may be caused by sample imbalance.

OpenGCS Online Monitoring – Regional Monitoring

Spatio-temporal factors of CO₂ distribution in Shanxi Province

Survey and observation data preprocessing

- Digitization of geological data, Extraction of boundary and fault zone data
- Extraction of topographic relief from elevation data
- OCO-2 data gridding and accuracy reconstruction
- Accuracy reconstruction and cropping of NDVI data
- Extraction of wind speed and direction from meteorological data and digitisation of meteorological stations

OpenGCS Online Monitoring – Regional Monitoring

Spatio-temporal Variation of Atmospheric CO₂ in Shanxi Province

Driving Factors Analysis of Atmospheric CO₂ based on GWR model

OpenGCS Online Monitoring – Regional Monitoring

Distribution of Fracture Zone in Qinshui Basin, Shanxi Province

There are 8 large and small fracture zones,
FID is the point number of the cell through which the fracture zone passes

- CO₂ concentrations show an "increasing-decreasing-increasing" trend throughout the year, but there is a sudden drop in March and November
- Reasons: Fewer real values and anomalies caused by interpolation preprocessing
- CO2 concentration in the fracture zone reaches its lowest value in September
- Reasons: Probably due to the slow temperature drop near the fracture zone, when the vegetation photosynthesis is relatively strong
- Comparing the annual and monthly variations and spatial patterns at the Qinshui Basin and the fracture zone, we found that the distribution of CO₂ at fracture zone has no obvious regularity, which is consistent with the spatiotemporal distribution of CO₂ in Qinshui Basin.

CO2 concentration variation at Fracture Zone 7

from January to December 2015

OpenGCS Online Monitoring – Local Monitoring

Online Monitoring of Geological CO₂ Storage and Leakage based on Wireless Sensor Networks

Monitoring of CO_2 leakage from geological storage is the key to check and verify the effectiveness, persistence and safety of CO_2 geological storage, which has important theoretical and practical significance for promoting the in-depth study of safety assessment and risk control of CCS.

Technical connotation: Advance the research progress of CO_2 capture and storage monitoring technology from the perspective of geo-information science and technology and promote the research of surface real-time monitoring technology for CO_2 geological storage leakage. Using the Internet of Things technology to develop a remote real-time monitoring instrument for CO_2 surface concentration, using cloud computing designed and developed a visual monitoring platform for CO_2 geological storage leakage.

OpenGCS Online Monitoring – Local Monitoring

Optimizing Location of Sensor Nodes in Geological CO₂ Storage Area

By analyzing data in a monitoring area, such as geological, geographical and meteorological data, analyzing an influence factors of a CO_2 leakage event and determining a sensitivity partition, designing different coverage control schemes of monitoring sensor network nodes, or intensively or sparsely arranging sensor monitoring nodes, a coverage network is described and optimally expressed on the basis of Delaunay triangulation.

Technical connotation: In the method for optimizing sensor network node location in a geological carbon storage area, the arrangement density of wireless sensor network nodes can be dynamically adjusted according to geological and geographical features, and the optimization of a dynamic monitoring sensor network for carbon dioxide injection area can be realized. The method reduces node redundancy and communication overheads as much as possible and has strong network coverage and connectivity.

About this presentation

Researched by

- China University of Mining and Technology
- Jiangsu Normal University
- China United Coalbed Methane Co., Ltd, Beijing, China
- Jiangsu Institute of Geology and Mineral Resources Design (Testing center of China Coal Geology Administration)

Supported by

- OpenGCS project of the Space Climate Observatory (SCO)
- Public Service Platform for GHG Emission Accounting and Monitoring Technology in Jiangsu Province(BM2033037)
- National Natural Science Foundation of China (41971335, 51978144)
- The third comprehensive scientific investigation project in Xinjiang (2022xjkk1006)
- Science and Technology Innovation Project of Jiangsu Provincial Department of Natural Resources (2022004,2022008)
- Special Project of Carbon Neutralization Institute of China Coal Geology Administration (ZMKJ-2021-ZX02)

Further Reading/References

- Ru Xiang, Hui Yang*, Zhaojin Yan, Abdallah M. Mohamed Taha, Xiao Xu, Teng Wu. Super-resolution reconstruction of GOSAT CO2 products using bicubic interpolation. Geocarto International, DOI: 10.1080/10106049.2022.2096699
- Hui Yang, Gefei Feng, Ru Xiang, Yong Qin, Songnian Li. Spatio-temporal validation of AIRS CO2 observations using GAW, HIPPO and TCCON. Remote Sensing, 12(21),3583. DOI: 10.3390/rs12213583
- Hui Yang, Yong Qin, Gefei Feng, et al. Online Monitoring of Geological CO2 Storage and Leakage based on Wireless Sensor Networks. IEEE Sensors Journal, Vol.13, No.2, 556-562. DOI: 10.1109/JSEN.2012.2223210
- Hui Yang, Songnian Li, Jun Chen, Xiaolu Zhang and Shishuo Xu. The Standardization and Harmonization of Land Cover Classification Systems towards Harmonized Datasets: A Review. ISPRS International Journal of Geo-Information, 2017, DOI: 10.3390/ijgi6050154
- Hui Yang, Xiaodong Xu, Gefei Feng, Yong Qin. Method for Optimizing Sensor Network Node Location in Geological CO2 Storage Area, 2020-07-28, US 16/485.116

