

ZARM - Center of Applied Space Technology and Microgravity

c/o Universität Bremen Am Fallturm 2, 28359 Bremen, Germany www.zarm.uni-bremen.de

ZARM -**University of Bremen**

Research Institute - Faculty 04 **Production Engineering**

Prof. Dr. Marc Avila (Executive Director)

- FLUID DYNAMICS
- SPACE SCIENCE
- SPACE TECHNOLOGIES
- HUMANS ON MARS

Research / Teaching

ZARM FAB mbH

ZARM Drop Tower Operation and Service Company

Prof. Dr. Marc Avila Peter von Kampen (Executive Board)

Dr.-Ing. Thorben Könemann

ZARM Technik AG

Supplier of Attitude Control Equipment for Satellites

Holger W. Oelze (Chief Executive Officer)

Peter von Kampen (Chief Financial Officer)

ZARM facilities beside the drop towers

Aerospace qualification and test services

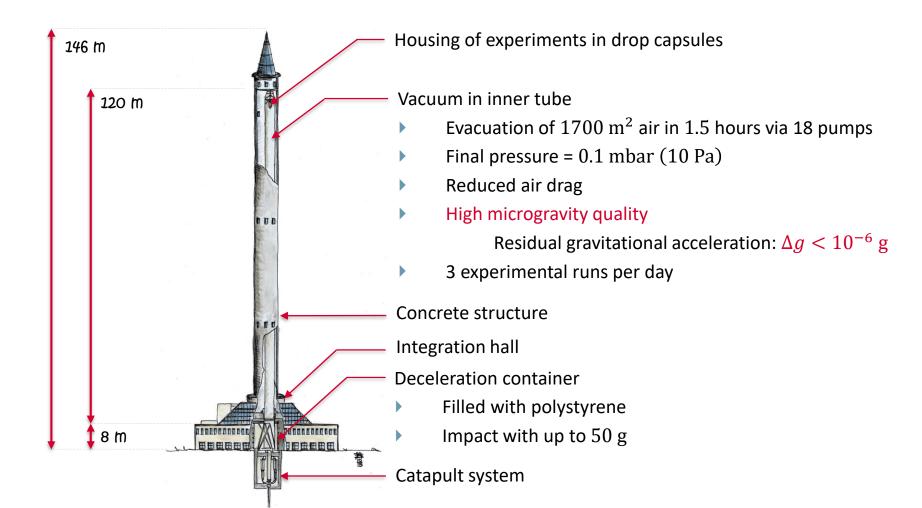
HYPER-GRAVITY LAB

- > 30 g centrifuge
- Mounting compatible with drop capsules
- Payload weight up to 1.5 t

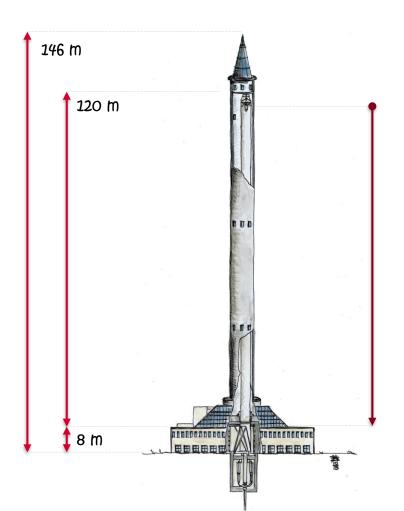
THERMAL VACUUM LAB

- TVC Thermal vacuum chambers of different sizes
- ► TCC Thermal cycling chamber
- TSC Thermal shock chamber

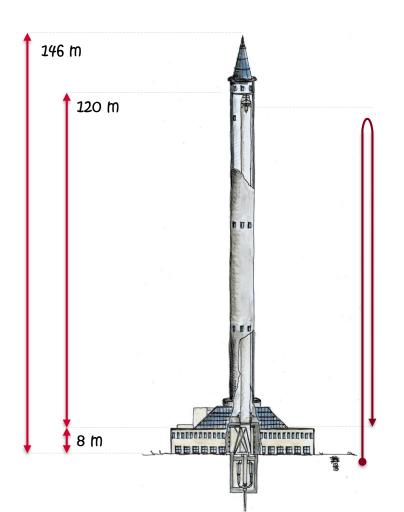
VIBRATION TEST LAB



- Long Stroke Shaker
- Maximum force = 35.6 kN

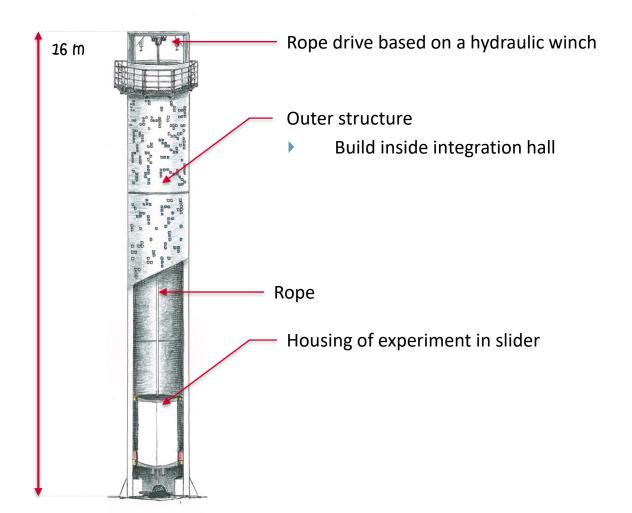

Bremen Drop Tower

Bremen Drop Tower

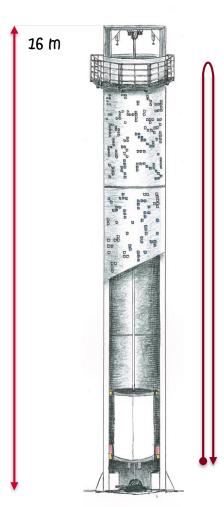

DROP MODE

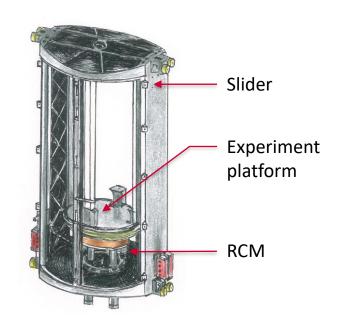
- 110m Free Fall distance
- Microgravity time 4.7 s

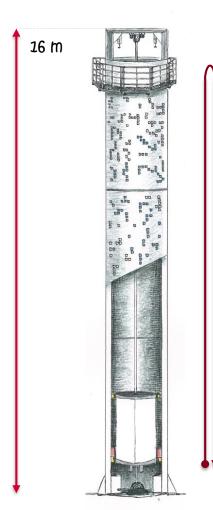
Bremen Drop Tower


CATAPULT MODE

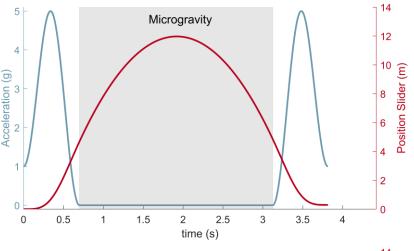
- Launch on vertical parabola
- Microgravity time 9.3 s

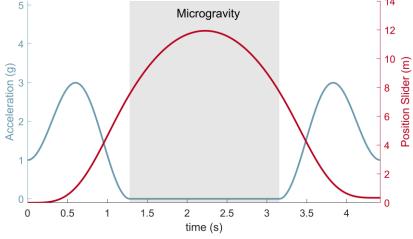





ACCELERATION ON VERTICAL PARABOLA

- Decoupling experiment capsule from slider via Release Caging Mechanism (RCM)
 - Slider acts an air shield
 - No vacuum needed
 - High microgravity quality $(\Delta g < 10^{-4} \mathrm{g})$
 - High repetition rate of up to 960 runs per day



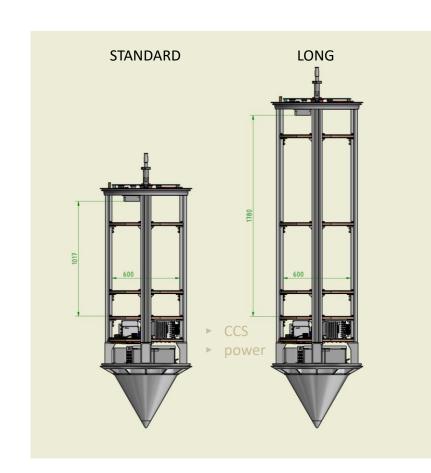


ACCELERATION ON VERTICAL PARABOLA

- Decoupling experiment capsule from slider via Release Caging Mechanism (RCM)
 - Slider acts an air shield
 - No vacuum needed
 - High microgravity quality $(\Delta g < 10^{-4} \text{g})$
 - High repetition rate of up to 960 runs per day
- Customize flight parabola to experimental requirements
 - 4 g acceleration → microgravity time = 2.5 s
 - 2 g acceleration \rightarrow microgravity time = 1.9 s

FUTURE OPERATION MODES

- Partial gravity
 - Like gravitational acceleration of Moon and Mars
 - Important in the field of human exploration and technical development
- g-vectoring
 - Changing gravitational acceleration during flight phase



How to drop!

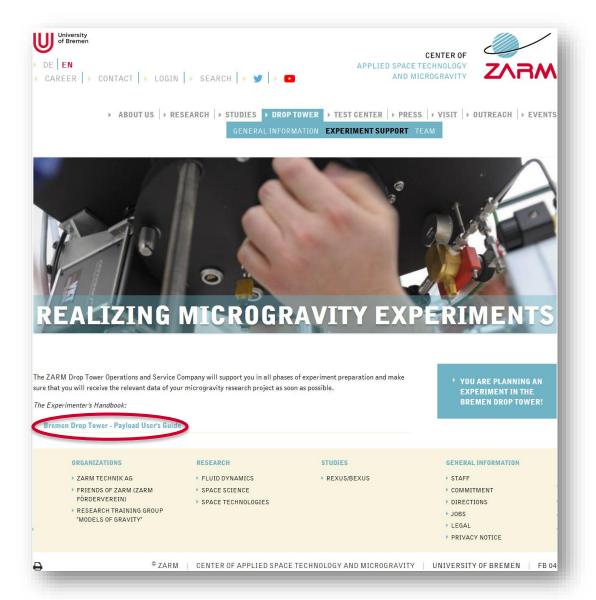
Requirements and Constraints

	Drop		Catapult	GraviTower	
Capsule type	Long	Standard			
Max. payload height (hard limit)	1.780 m	1.017 m			
Max. payload width (hard limit)	600 mm				
Max. payload mass	265 kg	225 kg	165 kg	265 kg	
Max. point load	50 kg				

- Standard capsule suited for drop, catapult and GraviTower operation
- Capsule equipment
 - Capsule Control System (experimental control, triggering, data acquisition)
 - Power supply
- Setup designed to withstand impact of 50 g (+ 50 g safety margin)

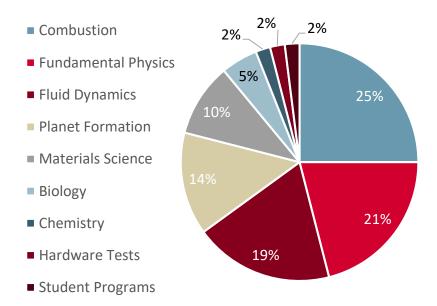
How to drop!

- Service provided by ZARM and the engineering team
 - Mechanical and electrical integration of the experiment into the capsule
 - NI-LabView software interface and data acquisition
 - Experimental control via standard network connection (Wi-Fi and Trulifi)
- Provided equipment
 - High-speed camera systems: Phantom Miro / Photron FASTCAM
 - Lenses and illumination systems
 - Non-standard power supply
 - Vacuum pumps (rotary vane pumps, turbo molecular pumps)


ZARM Website:

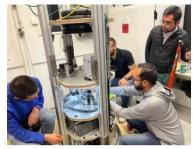
zarm.uni-bremen.de/

Bremen Drop Tower – Payload User's Guide



What to drop?

- Scientific experiments in various research field
- Hardware tests for space missions
- Student programs
 - DropTES
 - REXUS/BEXUS
 - PETRI



- ZARM contribution to DropTES since 2014
- Experiments in the fields of science and technology developing
- 8. Round 2022 Universidad de Antioquia (Columbia)
- 7. Round 2020 Universidad Católica Boliviana San Pablo (Bolivia)
- 6. Round 2019 **Politecnico de Milano** (Italy)
- 5. Round 2018 University of Bucharest and Politehnica University of Bucharest (Romania)
- 4. Round 2017 Warsaw University of Technology (Poland)
- 3. Round 2016 Instituto Tecnólogico de Costa Rica and Universidad de Costa Rica (Costa Rica)
- 2. Round 2015 Universidad Católica Boliviana San Pablo (Bolivia)
- 1. Round 2014 German Jordanian University (Jordan)

Conclusion

- The Bremen drop towers are microgravity labs for research and technology tests
 - → Stepping stones into space

DROP TOWER

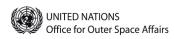
- Up to 9.3s in weightlessness
- High microgravity quality
- 3 experiments per day

GRAVITOWER BREMEN PRO

- Up to 2.5s in weightlessness
- Up to 960 experiments per day
- Partial-gravity option

Thank you!

Follow us



Acknowledgements

