Access to Space for All Expert Meeting, 16<sup>th</sup> May, 2023



## Capacity building through KiboCUBE Program

### Izumi YOSHIZAKI, Ph.D.

Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA)





### What is Kibo?

Japanese Experiment Module "Kibo" (meaning "hope" in Japanese)

### Japanese Experiment Module "Kibo"

### Robotic arm

### Pressurized module

Stowage

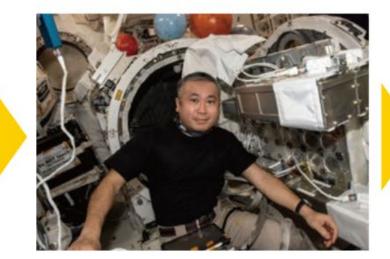
### **External Platform**

KiboCUBE is a Program based on the United Nations/Japan collaboration on 1U CubeSat Deployment from the International Space Station (ISS) Japanese Experiment Module "Kibo".

https://www.unoosa.org/oosa/en/ourwork/access2space4all/KiboCUBE/KiboCUBE\_Index.html



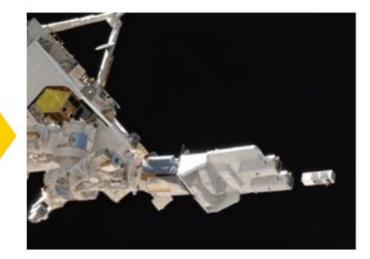
KiboCUBE in partnership with Japan Aerospace Exploration Agency provides the opportunity to develop a cube satellite (CubeSat) and have it deployed from the International Space Station Japanese module "Kibo".


KiboCUBE enables access to space promoting the sustainability of future space activities.

Design and develop a 1U size CubeSat. Go through safety reviews and testing.

#### CubeSat deployment mission using J-SSOD




Bring it to JAXA.



JEM Small Satellite Orbital Deployer

2 The satellite install case is installed on the MPEP by the crew member in Japanese Experiment Module "Kibo", and then transferred from the airlock to the outside.







| Round | Awardee                                                                                                 | Mission and Status                                                                                                      |
|-------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1     | Republic of <mark>Kenya</mark> : "1KUNS-PF"<br>University of Nairobi                                    | To monitor agriculture and coastal areas<br>Deployed 5 <sup>th</sup> Nov. 2018                                          |
| 2     | Republic of Guatemala : "Quetzal-1"<br>Universidad de Valle De Guatemala                                | To acquire remote sensing data for natural resource management<br>Deployed 29 <sup>th</sup> April 2020                  |
| 3     | Republic of Mauritius : "MIR-SAT 1"<br>Mauritius Research and Innovation<br>Council                     | To collect images and to test onboard communication<br>Deployed 22 <sup>nd</sup> June 2021                              |
| 3     | Republic of Indonesia: "SS-1"<br>Surya University                                                       | To demonstrate remote communication<br>Deployed 6 <sup>th</sup> January 2023                                            |
| 4     | Republic of Moldova : "TUMnanoSAT"<br>Technical University of Moldova                                   | To demonstrate technology and test various components<br>Deployed 12 <sup>th</sup> August 2022                          |
| 5     | Sistema de la Integracion<br>Centroamericana: SICA<br>"MORAZAN-SAT"                                     | To monitor weather variables in remote areas providing early<br>warning during extreme weather events<br>In development |
| 6     | United Mexican States: "Gxiba-1"<br>The Universidad Popular Autónoma del<br>Estado de Puebla            | To observe active volcanoes in Mexico and analyze the ash dispersion<br>In development                                  |
| 6     | Republic of Tunisia : "TUNSAT-1"<br>Ecole Supèrieure Privée d'Ingénierie et de<br>Technologie Appliquée | To validate of the technology which is the focus on the reliability<br>of 1U CubeSat<br>In development                  |

# Since 2012, 72 CubeSats from 31 countries were deployed using J-SSOD. (KiboCUBE awardees)

Countries which deployed satellites using J-SSOD (excluding Japan).

2012 : USA , Vietnam

2013 : USA, Vietnam

2014, 2015 : Brazil

2016 Singapore, Philippines, Italy

2017 : Bangladesh, Ghana, Mongolia, Nigeria

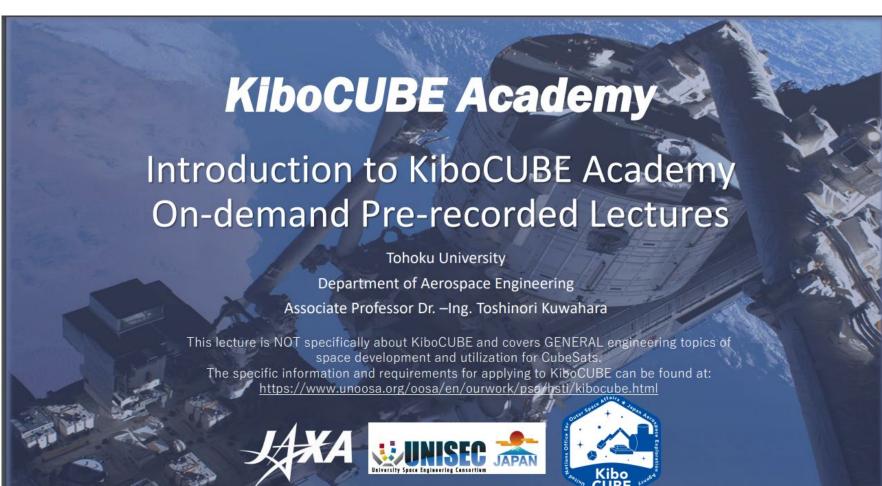
2018 : Bhutan, Costa Rica, Kenya, Philippines,, Malaysia, Singapore, Turkey 2019 : Nepal, Rwanda, Sri Lanka, Egypt, Singapore
2020 : Philippines,, , Guatemala, Paraguay, Myanmar, Israel
2021 : Mauritius, UAE, Australia, Philippines
2022 : Moldova, Zimbabwe, Uganda
2023 : Indonesia

1.First Satellite, Non-ISS Partner 2.Non-ISS Partner 3.ISS Partner

Powered By Bing Geospatial Data Edit Microsoft Navinfo OpenStreetMap TomTom Wikipedia Zenrin

### Advantages of KiboCUBE

- 1. Free of charge
- 2. Get technical support from experts (UNISEC, JAXA, Service provider)
- 3. Launch opportunities 3-4 times a year (even if you miss a certain flight, you don't have to wait for a long time for the next chance)
- 4. Low vibration during launch compared to rocket rides
- 5. You can see the deployment at real-time!










In support of KiboCUBE, JAXA has developed a series of free lectures in English by experts of space engineering in collaboration with UNISEC (University Space Engineering Consortium).



### The free lectures are posted here !



https://www.unoosa.org/oosa/en/ourwork/ access2space4all/SatDevTrack\_Webinars.h tml#Tag1

Live sessions are also held a few times a year.

Lecture 0 Introduction to KiboCUBE Academy (pdf and video) \*updated in April 2023 Lecture 1 Introduction to Small Satellite Mission and Utilization (pdf and video) \*updated April 2023 Lecture 2 CubeSats for Capacity Building (pdf and video) Lecture 3 Overview of Project Management of Satellite Development (pdf and video) Lecture 4 Systems Engineering for Micro/nano/pico-satellites (pdf and video) Lecture 5 Introduction of Safety Review Process (pdf and video) Lecture 6 CubeSat Design for Safety Requirements (pdf and video) \*updated April 2023 Lecture 7 Introduction to CubeSat Technologies (pdf and video) Lecture 8 Subsystem Lecture for CubeSat: Power Control System (pdf and video) Lecture 9 Subsystem Lecture for CubeSat: Communication System (pdf and video) Lecture 10 Subsystem Lecture for CubeSat: Command and Data Handling System (pdf and video) Lecture 11 Subsystem Lecture for CubeSat: Structure System (pdf and video) Lecture 12 Subsystem Lecture for CubeSat: Mechanism System (pdf and video) Lecture 13 Subsystem Lecture for CubeSat: Thermal Control System (pdf and video) Lecture 14 Subsystem Lecture for CubeSat: Attitude Control System (pdf and video) Lecture 15 Introduction to CubeSat Environmental Testing (pdf and video) Lecture 16: Introduction to Orbital Mechanics for Microsatellites (pdf and video) Lecture 17: Introduction to CubeSat Operation and Ground Systems (pdf and video) Lecture 18: Introduction to CubeSat Payload Systems (pdf and video) Lecture 19: CubeSat System Integration and Electrical Testing (pdf and video) Lecture 20: Space Debris Problems and Countermeasures (pdf and video) \*updated April 2023 Lecture 21: Lessons Learned of CubeSat Missions (pdf and video)





### JAXA and UNOOSA agreed to extend the KiboCUBE program until 2030. We will open the next round soon!

#### JAXA is also contributing to "Access to Space for all" in the field of STEM. Next mission entry deadline is May 28 ! (Entry through UNOOSA has already closed)

- The Kibo Robot Programming Challenge is an educational program.
  - Students solve various problems by programming free-flying robots (Astrobee and Int-Ball) in the International Space Station (ISS).
- Participants will have the chance to learn cutting-edge methodologies and to hone their skills in <u>science, technology, engineering and mathematics (STEM).</u>



