

VTT National Time and Time Services

<u>Thomas Fordell</u>, Thomas Lindvall, Kalle Hanhijärvi, Anders Wallin

National Metrology Institute VTT MIKES

VTT

24/10/2023 VTT – beyond the obvious

□ Coordinated Universal Time

□ VTT MIKES optical atomic clock

□ Time Services

Coordinated Universal Time (UTC)

VTT

10 SMU SU TCC AOS APL AUS BEV BIM BIRM CAO CNMP DTAG P

UTC Time Links: GNSS

Common clock, short baseline

- Common-view used until 2006.
- In 2004 IGS introduces high-precision GPS clock products All-in view
- Precise Point Positioning (PPP) since 2009.
- Smallest statistical uncertainty 0.3 ns. Calibration 1.5 ns.
- PPP-AR in the near future?

Panfilo and Arias, Metrologia 56 042001 (2019)

Jiang et al., Metrologia 60, 065002 (2023)

 10^{6}

UTC Time Links: Two-Way Satellite Time and Frequency Transfer (TWSTFT)

Introduced in 1999.

Uses geostationary telecommunications satellite.

Clocks compared simultaneously for two hours each day.

Small number of links (12%) due to: High cost (equipment and satellite service) **Operational complexity**

Statistical uncertainty < 1 ns. Calibration uncertainty 1 ns.

Panfilo and Arias, Metrologia 56 042001 (2019)]

Satellite

Antenna

Diplexer and Filters

Transmitte

Receiver

dpp

UTC Time Links: Two-Way vs GPS PPP

Jiang and Lewandowski, Rapport BIPM-2011/07

VTT

UTC Time Links: Fiber links

- <10⁻¹⁸ frequency uncertainty over continental distances
- Many different techniques
 - microwave (radio-over-fibre)
 - coherent optical
- □ Only two fibre links report data to BIPM (2019)

VTT

CIRCULAR T 357 2017 OCTOBER 10, 13h UTC ISSN 1143-1393

BUREAU INTERNATIONAL DES POIDS ET MESURES ORGANISATION INTERGOUVERNEMENTALE DE LA CONVENTION DU METRE PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 FAX. +33 1 45 34 20 21 <u>tai@bipm.org</u>

The contents of the sections of BIPM Circular T are fully described in the document "Explanatory supplement to BIPM Circular T" available at http://ftp2.bipm.org/pub/tai/publication/notes/explanatory_supplement_v0.1.pdf

1 - Difference between UTC and its local realizations UTC(k) and corresponding uncertainties. From 2017 January 1, 0h UTC, TAI-UTC = 37 s.

Date 2017 Oh UTC	AUG 29	SEP 3	SEP 8	SEP 13	SEP 18	SEP 23	SEP 28	Uncert	ainty/1	ns Notes
MJD	57994	57999	58004	58009	58014	58019	58024	uA	uВ	u
Laboratory k			[[UTC-UTC(k)]/ns					
JV (Kjeller)	4.8	-6.2	-17.2	-16.6	-17.6	-19.0	-19.6	0.4	20.0	20.0
KEBS (Nairobi)	-	-	-	-	-	-	-			
KIM (Serpong-Tangerand	141.1	168.3	169.5	174.4	188.4	200.4	173.8	2.0	20.0	20.1
KRIS (Daejeon)	35.5	40.3	44.3	47.7	50.6	52.2	52.9	0.4	11.1	11.1
KZ (Astana)	-294.7	-322.8	-334.3	-331.1	-313.3	-298.9	-301.0	1.5	9.3	9.4
LT (Vilnius)	158.7	144.0	145.4	157.0	152.5	168.8	181.8	2.0	11.3	11.4
MASM (Bavanzurkh)	-411.6	-428.7	-451.6		_	-34.5	-60.0	0.7	20.0	20.1
MBM (Podgorica)	51657.3	51989.6	52323.7	52643.4	52978.9	53335.9	53658.6	1.5	20.0	20.1
MIKE (ESDOO)	-0.4	-0.3	0.5	0.5	0.8	-0.2	-0.7	0.7	4.2	4.3
MKEH (Budapest)	-65005.0	-65222.3	-65420.4	-65627.5	-65836.7	-66030.7	-66237.0	1.5	20.0	20.1
MSL (Lower Hutt)	285.3	289.9	309.0	301.6	285.8	300.7	321.8	1.5	20.0	20.1
MTC (Makkah)	1149.2	1164.1	1145.4	1170.6	1149.7	1204.2	1187.0	10.0	7.4	12.4
NAO (Mizusawa)	99.4	86.1	93.0	95.8	97.0	89.5	75.7	2.0	20.0	20.1
NICT (Tokvo)	-5.7	-5.8	-7.5	-6.9	-5.9	-4.2	-1.9	0.4	2.2	2.3
NTM (Beijing)	5.2	4.5	3.8	3.3	3.9	3.7	2.9	0.7	1.9	2.0
NTMB (Bucharest)	1813.1	1816.1	1803.5	1816.4	1818.9	1814.2	1808.5	0.4	7.2	7.2
NIMT (Pathumthani)	203.3	208.9	214.5	217.7	219.5	218.6	221.5	1.0	20.0	20.1
NIS (Cairo)	11.9	8.4	2.4	-19.9	-30.1	-48.5	-55.3	1.6	20.0	20.1
NIST (Boulder)	0.5	0.6	1.1	1.7	2.2	2.2	1.4	0.4	4.9	4.9

Historical evolution

1973 Optical single-ion frequency standards proposed by Dehmelt 1980s Experimental single-ion work (NBS/NIST, NRC, NPL,PTB) 2000 Optical frequency comb 2006- Optical transitions chosen as secondary representations of the second 2011- VTT MIKES ion-clock work

Optical atomic clocks

- Clock instability:
 - (quantum projection noise limited)
- Two different kinds of atomic reference:
 - Single ion in radio-frequency trap:
 - 'ideal' isolated quantum system
 - low SNR (N = 1)•
 - Neutral atoms in optical lattice: •
 - interactions (atom-atom and atom-light) make analysis much more difficult ٠
 - experimentally more involved (more and higher-power lasers, larger atom oven, water-cooled coils etc.)
 - better SNR ($N = 10^3...10^4$) •

$$\sigma_{y}(\tau) \approx \frac{\Delta v}{v_{0}} \sqrt{\frac{1}{\sqrt{N}}} \sqrt{\frac{T_{c}}{\tau}}$$

 $\sigma_{y}(\tau) \approx \frac{\Delta v}{v_{0}} \frac{1}{\sqrt{N}} \sqrt{\frac{T_{c}}{\tau}} \qquad \text{microwave vs optical} \\ 400 \text{ THz vs 9 GHz} \end{cases}$

⁸⁸Sr⁺ was chosen for its 'simplicity'

Radio-frequency ion traps

Hyperbolic Paul trap (1953): 'infinite' electrodes => ideal quadrupole potential Ring trap for improved optical access (PTB)

Endcap trap: even better optical access

Sr⁺ single-ion "clock"

Preliminary uncertainty budget: October 2023

Source	Shift (1e-18)	Unc. (1e-18)		
Blackbody radiation E1 shift	513.11	. ,	BBR shift updated dynamically	
BBR field		0.38		
differential polarizability		0.76		
dynamic correction		0.07		
Blackbody radiation M1 shift	-0.0101	0.0002		
Collisional shift	0	0.22		
Thermal motion	-1.58	0.63		
Electric quadrupole shift	0	0.069		
Excess micromotion	0	0.003	r efficient cancellation schemes	
Tensor Stark shift	0	0.001		
1092-nm ac Stark shift	-0.40	0.40	will be reduced by MEMS switch	
674-nm E1 ac Stark shift	0.01	0.01		
674-nm E2 ac Stark shift	0	0.06		
Quadratic Zeeman shift, applied B	0.1632	0.0032	880rt has sytrometry low sensitivity	
Quadratic Zeeman shift, rf B	0	0.000 01	^o Sr ¹ has extremely low sensitivity	
AOM chirp	-0.2	0.1		
First-order Doppler shift	0	0.3		
Servo errors	0	0.1		
TOTAL:	511.1	1.2	⁸⁸ Sr ⁺ has great potential with BBR under control!	

Absolute frequency measurement against TAI during March 2022 campaign

Applications -new physics

PRL 113, 210801 (2014)

204 | NATURE | VOL 567 | 14 MARCH 2019

https://doi.org/10.1038/s41586-019-0972-2

Optical clock comparison for Lorentz symmetry testing

Christian Sanner^{1,5*}, Nils Huntemann¹, Richard Lange¹, Christian Tamm¹, Ekkehard Peik¹, Marianna S. Safronova^{2,3} & Sergey G. Porsev^{2,4}

Applications -Relativistic geodesy

Geodesy and metrology with a transportable optical clock NATURE PHYSICS | VOL 14 | MAY 2018 | 437-441 |

Jacopo Grotti¹, Silvio Koller¹, Stefan Vogt¹, Sebastian Häfner¹, Uwe Sterr¹, Christian Lisdat^{©1*}, Heiner Denker², Christian Voigt^{©2,3}, Ludger Timmen², Antoine Rolland⁴, Fred N. Baynes⁴, Helen S. Margolis^{©4}, Michel Zampaolo⁵, Pierre Thoumany⁶, Marco Pizzocaro⁶, Benjamin Rauf^{6,7}, Filippo Bregolin^{6,7}, Anna Tampellini^{6,7}, Piero Barbieri^{6,7}, Massimo Zucco⁶, Giovanni A. Costanzo^{®,6,7}, Cecilia Clivati⁶, Filippo Levi⁶ and Davide Calonico⁶

Applications -Relativistic geodesy

H. Katori et al., Space-time information platform with a cloud of optical lattice clocks (Japan)

$$\Delta f/f=10^{-18}$$
 \longrightarrow $\Delta h=1$ cm

Time Services: Low-Frequency Time Transfer

DCF77 started in 1959.
77kHz, AM and PM

Bauch et al., PTB Mitteilungen 119, 3 (2009)

- DCF77, Germany ~1500 km, 77.5 kHz
- MSF, UK, ~1800 km, 60 kHz
- TDF, France, ~2000 km, 162 kHz

Low-Frequency Time Transfer

DCF77 @ VTT MIKES vs Metsähovi

=> With augmentation a backup for GNSS ?

WR PTP Kajaani-Oulu

Kajaani-Oulu-Kajaani 2x228km

Optical-Electrical-Optical amplification

- + High-gain (>30 dB)
- + Signal reshaping
- Wavelength drift => symmetric repeater

Fordell et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2023)

GNSS-style fiber-optic time transfer

Averaging time τ (s)

Conclusions

- Lots of activity in developing optical frequency standards
 - Fundamental science
 - New physics (dark matter, temporal variation of physical constants, symmetry violations,...)
 - Relativistic geodesy
 - · Low-frequency gravitational wave observatories
 - Time keeping
 - Only a few report regularly to BIPM
- Fibre-optic time and frequency transfer
 - Continental distances
 - Best performance with symmetric, single-fibre, out-of-band solutions
 - Loss-tolerant "GNSS-type" solutions needed for wider availability?
- Augmented low-frequency time signals as backup for GNSS