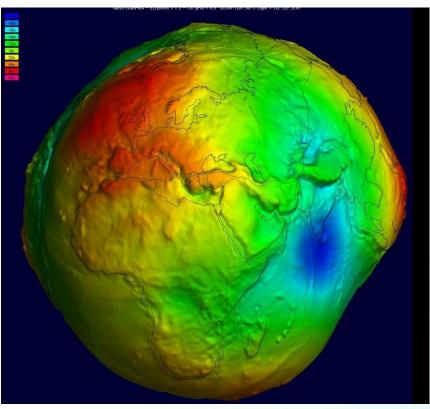
Using GNSS to Validate the Philippine Geoid Model

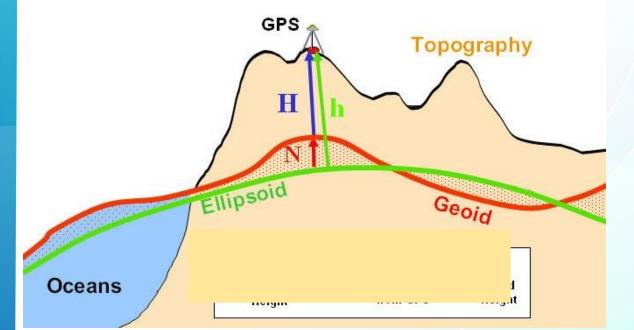
Donnie Mancera, Ronaldo C. Gatchalian, and Aila Leana Sampana National Mapping and Resource Information Authority (NAMRIA) PHILIPPINES



Outline

- The Geoid
- Modernization Initiatives of NAMRIA
- Gravity Control Network and Geoid Model Development
- Philippine Geoid Model
- Validation of the Philippine Geoid Model Using GNSS Observation
- Conclusion and Recommendations

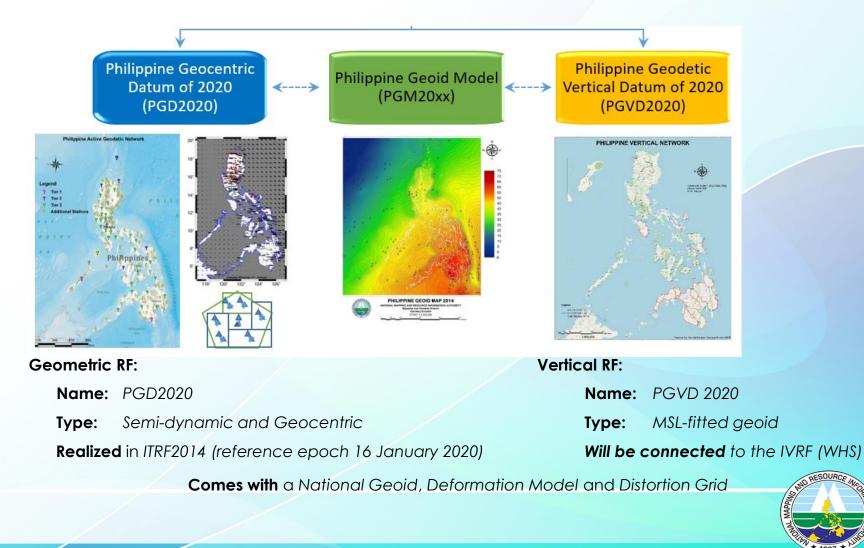
The Geoid


Geoid undulation in pseudocolor, shaded relief and vertical exaggeration (10000 vertical scaling factor) - Wikipedia

- It is an equipotential surface (surface of equal gravitational potential) best approximates the global mean sea level. Its shape is due to the uneven mass distribution within and on the Earth's surface.
- The Geoid is used as a Vertical Datum, where precise surface elevations can be measured
- Geoids are developed using gravity measurements
 - Satellite Gravity Measurements (GOCE, DTU10, DTU15)
 - Airborne Gravity Measurements
 - Terrestrial Gravity Measurements
 - Satellite Altimetry

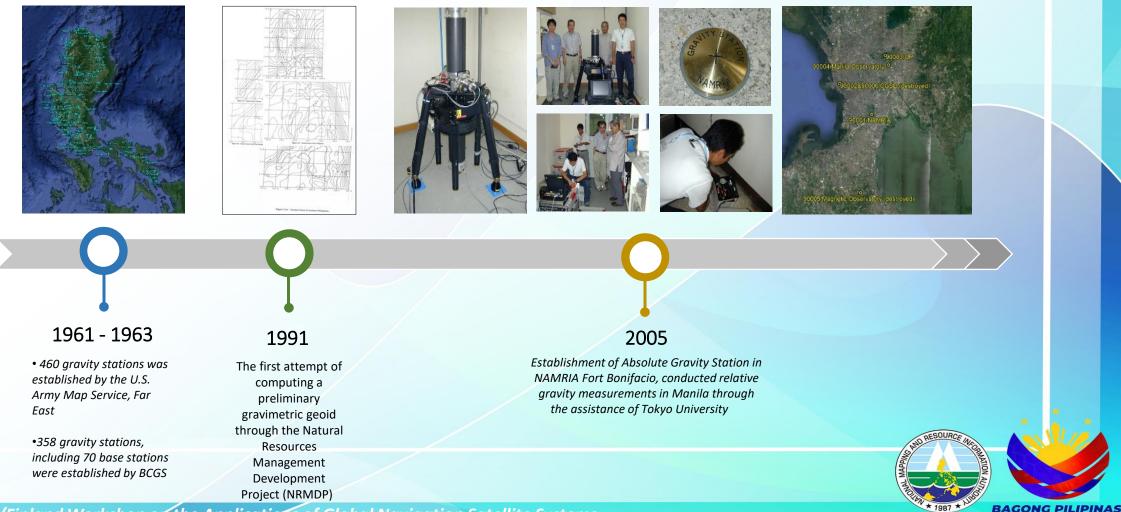
The Geoid

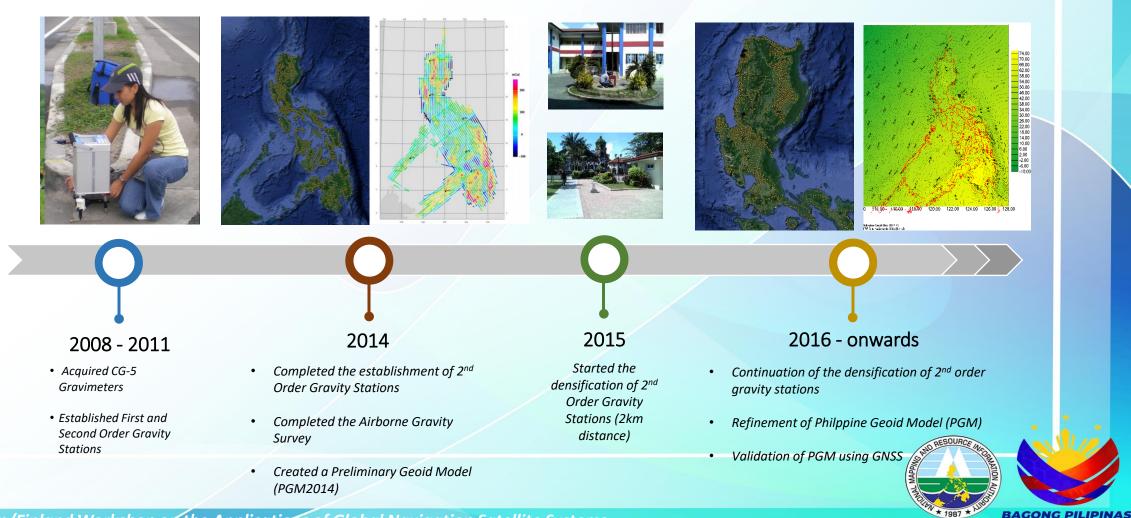
The Relationship of Geoid and Ellipsoid


Using GNSS, we can determine the Orthometric Height of any point if we know the Geoid Height from our Geoid Model using the formula

H = h - N

Where H = Orthometric Height (MSL) h = Ellipsoidal Height (GNSS observation) N = Geoidal Height


Modernization of the PGRS


United Nation/Finland Workshop on the Applications of Global Navigation Satellite Systems October 23 – 26, 2023 Helsipki, Finland

BAGONG PILIPINAS

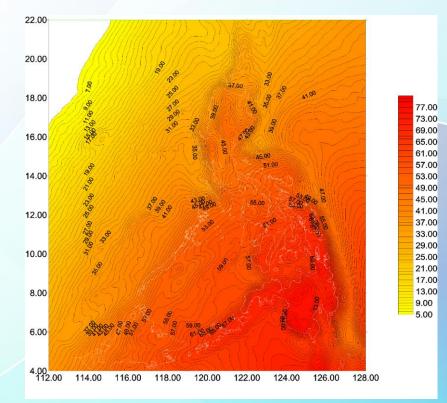
Gravity Control Network and Geoid Model Development

Gravity Control Network and Geoid Model Development

Philippine Geoid Model (PGM)

- Developed in 2014, through the assistance of the National Space Institute of Denmark Technical University (DTU-Space)
- Hybrid Geoid (MSL Based Geoid)
- Input data are:
 - Nationwide airborne gravity survey
 - ✤ 1,261 Land Gravity Stations
 - Marine Satellite Altimetry (DTU-10)
 - Satellite Gravity Data from Gravity Field and Steady State Ocean Circulation Explorer (GOCE)
 - ✤ A set of 190 GNSS/Leveling data (BMs) in ITRF 2014 was used to fit the Geoid
- RMS fit of GNSS/Leveling is 0.5 m with max offset value of 1.49 m

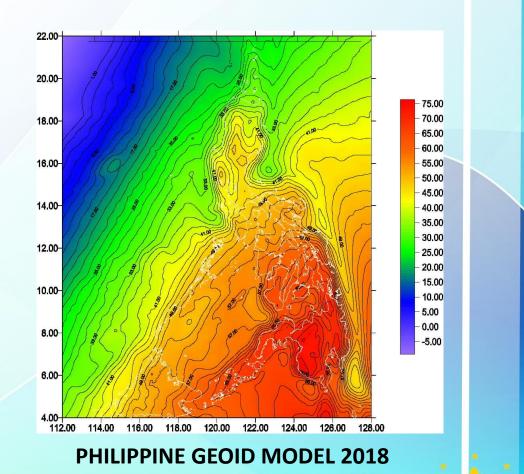
PHILIPPINE GEOID MODEL 2014


Philippine Geoid Model (PGM)

- Prof. Rene Forsberg of DTU recommended the following to improve the geoid model:
 - Carefully analyze the leveling network for adjustment errors
 - Revisit connections and antenna height errors of GNSS data
 - Erroneous points (geoid outliers) must be resurveyed (gravity and GNSS)
 - Additional gravity surveys in major cities
 - New GNSS-fitted version of the geoid must be computed as new batches of GNSS-Leveling data come in

PGM 2014 to PGM 2016

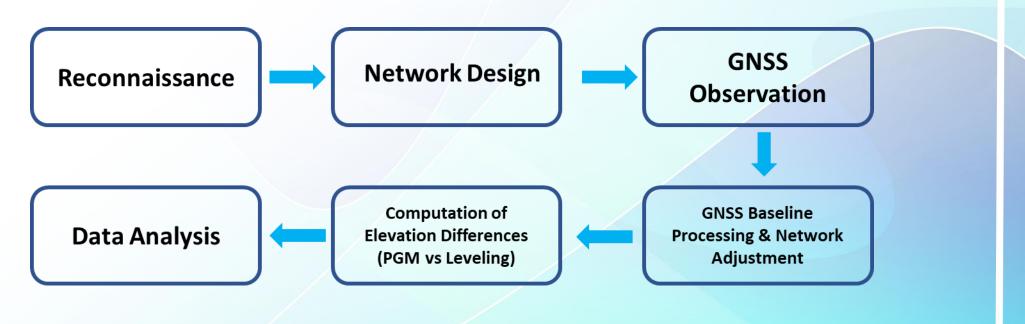
- GNSS-levelling data were re-analysed, corrected, and outliers were deleted
- Old land gravity data were reprocessed and additional land gravity stations were established (2,214 in total)
- Only 101 of the original 190 GNSS/Leveling points remained and used in fitting the recomputed Geoid Model
- 2014 Airborne and satellite data processing results were used
- With the help of Prof. Forsberg, NAMRIA started the recomputation of the geoid model
- RMS fit is now 0.054 m with an SD of 0.022m


PHILIPPINE GEOID MODEL 2016

PGM 2016 to PGM 2018

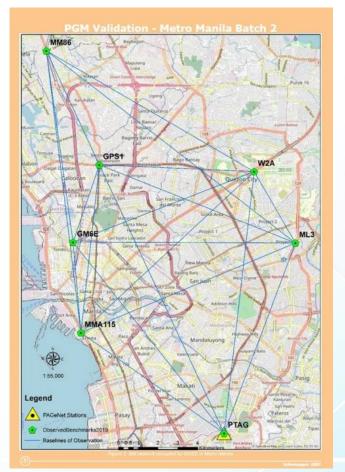
Input data:

- PGM 2016 re-computation
- New Satellite Gravity Data (DTU15)
- Additional Land Gravity Stations (5,779 Total)
- 286 GNSS/Leveling stations (BMs)
- Gravimetric geoid has an accuracy of around 10 cm across the country
- RMS fit is now 0.022 m



BAGONG PILIPINAS

- To validate and confirm the PGM2018 fit to the leveling network, benchmarks (BMs) were observed through GNSS surveys (to get the ellipsoidal height).
- GNSS Data were post-processed using Trimble Business Center (TBC), with the PGM2018 file integrated into the software.
- The TBC generates the MSL elevation of the BMs (based on the PGM2018).
- These TBC generated MSL elevations were then compared to the Geodetic Leveling adjusted elevations.
- The resulting elevation differences between the two methods indicated the accuracy of the PGM.



Workflow of the PGM Validation

BAGONG PILIPINAS

PILOT AREA (Metro Manila)

Reconnaissance

- BMs were selected from the adjusted level networks based on their distribution
- Field reconnaissance was done to ensure the BMs are still existing and asses the conditions and suitability for GNSS observation

Network Design

- Locations of the BMs are plotted on a map to design and create the survey plan
- The Network Design considered the distribution of the points and also the number of GNSS receivers that will be used for efficacy.

GNSS Observation

- Survey was scheduled into loops of points of simultaneous observations
- Each loop was occupied for two observation sessions for an average of two to four hours per session using static technique
- CORS were also used in the study (PTAG) to maximize the equipment available
- During the observation, instruments are carefully centered on the BMs and antenna heights were meticulously measured multiple times.

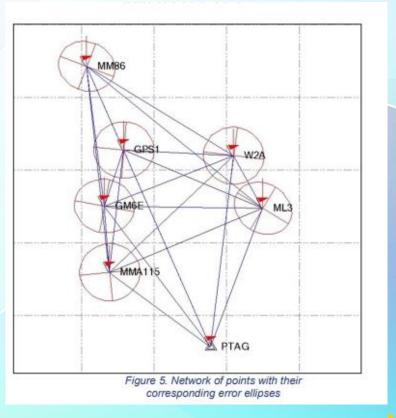


Figure 3. NAMRIA Geodesy Division personnel measuring the antenna height of the GNSS setup in Isabela

GNSS Data Processing

- Data were processed and adjusted using Trimble Business Center (TBC)
- The Geoid Grid Format (ggf) of thePGM2018 was used and incorporated into the TBC to generate the MSL elevations of the BMs using the equation H = h –N
- Datum used is the epoch 1987 of WGS84 and only CORS were used as reference in processing the GNSS data since their epoch of observations is consistent with that of the GNSS/Leveling

GNSS Data Network Adjustment

- After processing, the network of BMs was adjusted with allowable setup errors of 3mm and 2 mm in antenna heights and centering respectively
- In the final adjustment, the CORS was constrained and most residual error values were near zero
- The list of adjusted geodetic coordinates of points included the height errors ranging from 0.011 m to 0.024 m as shown in the table

Point ID	Latitude	Longitude Height (Meter)		Height Error (Meter)	Constraint	
GM6E	N14º 37' 19.78596"	E120º 58' 19.71607"	46.9616	0.013		
GPS1	N14º 39' 26.31635"	E120º 59' 02.57359"	61.55764	0.012		
ML3	N14º 37' 18.63727"	E121º 04' 23.57747"	103.68939	0.024	-	
MM86	N14º 42' 32.86143"	E120º 57' 35.86834"	45.53595	0.018		
MMA115	N14º 34' 51.70557"	E120º 58' 32.40288"	48.96314	0.011		
PTAG	N14º 32' 07.43281"	E121º 02' 26.78149"	88.05700	?	LLh	
W2A	N14º 39' 15.22590"	E121º 03' 15.91183"	93.65926	0.011		

Computation of Elevation Difference

- Corresponding list of BMs with elevation from the leveling surveys was gathered (this was computed and adjusted using StarNet Adjustment Software)
- The BMs, together with their corresponding elevations by GNSS leveling were tabulated with their difference in elevations using the PGM Validation Evaluation Checklist (see table)
- The elevations from the adjusted geodetic leveling data were compared with that of the elevations estimated using the PGM

PGM VALIDATION EVALUATION CHECKLIST

STATION NAME	DESCRIPTION		GNSS DATA		VERTICAL DATA						
		Submitted to					ELEVATION (m)]	
	Updated Description	GNIS for Archiving (Hard and Digital Copies)	Sessions = Two (2)	Error Ellipse (m)	ELLIPSOIDAL HEIGHT (m)	Height Error (m)	PGM (2018a)	Leveling	Difference	⊠ if < 10-cm ⊠ if >	Encoded in GNIS
GM6E	V. ALMUETE	TIM BALUYOT	×	0.002	46.969	0.013	1.776	1.964	-0.188	X	TIM BALUYOT
GPS1	V. ALMUETE	TIM BALUYOT	×	0.002	61.558	0.012	16.273	16.376	-0.102	X	TIM BALUYOT
ML3	V. ALMUETE	TIM BALUYOT	×	0.004	103.689	0.024	57.368	57.458	-0.090		TIM BALUYOT
MM86	V. ALMUETE	TIM BALUYOT	×	0.003	45.536	0.018	0.491	0.871	-0.380	×	TIM BALUYOT
MMA115	ОК	OK		0.002	48.963	0.011	3.689	3.778	-0.089		TIM BALUYOT
W2A	OK	ОК		0.002	93.659	0.011	47.618	47.692	-0.074		TIM BALUYOT
			Processed by:				Processedb	y:	0:		
			Name/Position/Signature				Na	me/Position/S	lignature		

Horizontal Section Chief

Geodesy Division Chief

Table 2. Comparison of elevations from geodetic leveling and the geoid mode

Discussion and Analysis

- Accuracy of the result of this study depended largely on the ff:
 - Accuracy of GNSS/Leveling surveys
 - The millimetre error ellipses of the GNSS survey met the accuracy standard for 1 cm control positioning
 - Particular attention was given to the accuracy of ellipsoidal heights. A 1-3 cm error in height in the final adjustment was deemed acceptable for a target of 10 cm geoid accuracy.
 - Accuracy of Geodetic Levelling Data
 - Only First Order geodetic levelling was used in the study
 - Accuracy of the PGM
 - The accuracy of the PGM2018 is more or less 10 cm

Nationwide Result of PGM Validation

- GNSS survey error has incurred a maximum height error of 5.9 cm in Region II (refer to Table 3)
- Leveling error accounted for 16.3 cm in the Cordillera Autonomous Region (CAR) and 12.2 cm in Region IV-A

	Error Ellipse (m)	Height Error (m)
Region I	0.002 - 0.006	0.008 - 0.026
Region II	0.001 - 0.007	0.006 - 0.059
CAR	0.002 - 0.005	0.006 - 0.034
NCR	0.001 - 0.005	0.006 - 0.026
Region IVA	0.001 - 0.005	0.005 - 0.020
Region V	0.002 - 0.006	0.003 - 0.020
Cebu Province	0.003 - 0.006	0.012 - 0.035
Region IX	0.003 - 0.006	0.014 - 0.023
Region X	0.003 - 0.006	0.010 - 0.020

Table 3. GNSS Survey Accuracy, where error ellipse is for horizontal and height error is for vertical

	SD (m)		
Region I	0.020 - 0.083		
Region II	0.033 - 0.083		
CAR	0.024 - 0.163		
NCR	0.003 - 0.039		
Region IVA	0.030 - 0.122		
Region V	0.012 - 0.068		
Cebu Province	0.021 - 0.058		
Region IX	0.040 - 0.087		
Region X	0.013 - 0.075		

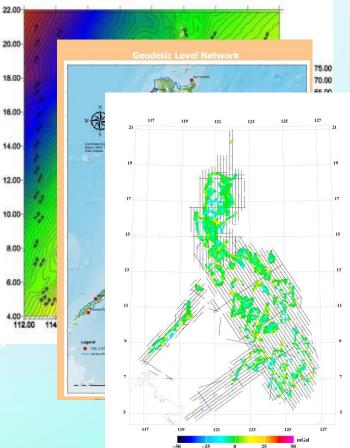
Table 4. Leveling Data Accuracy

Result of Nationwide PGM Validation

- Elevations from the GNSS+PGM from each province surveyed were compared with the adjusted elevations form levelling
- The 286 validation points showed a wide range of difference relative to the GNSS+PGM extending from +0.00 m to +0.946 m with large outliers in encircled areas
- Errors can be attributed to erroneous levelling data and have to be checked or releveled

Province		Province	△Elevation (m)	Province	△Elevation (m)	
RI. Ilocos Norte	0.000 - 0.139	CAR. Mountain Prov- ince	0.038 - 0.123	RV. Camarines Sur	0.005 - 0.106	
RI. Ilocos Sur	0.011 - 0.221	NCR. Metro Manila	0.017 - 0.380	RV. Sorsogon	0.042 - 0.086	
RI. La Union	0.001 - 0.042	RIII. Bulacan	acan 0.027 - 0.742 Cebu Province		0.044 - 0.381	
RI. Pangasinan	0.004 - 0.527	RIVA. Batangas	0.054 - 0.946	RIX. Zamboanga del Norte	0.074 - 0.151	
RII. Cagayan	0.003 - 0.119	RIVA. Cavite	0.041 - 0.406	RIX. Zamboanga del Sur	0.130 - 208	
RIII. Isabela	0.007 0.345	RIVA. Laguna	0.030 - 0.373	RIX. Zamboanga Sibugay	0.064 - 0.165	
CAR. Abra	0.052 - 0.184	RIVA. Quezon	0.001 - 0.818 RX. Bukidne		0.017 - 0.145	
CAR. Apayao	0.002 - 0.088	RIVA. Rizal	0.002 - 0.099	RX. Lanao del Norte	0.051 - 0.496	
CAR. Ifugao	0.095 - 0.179	RV. Albay	0.027 - 0.130 RX. Misamis Occidental		0.148 - 0.168	
CAR. Kalinga	0.059 - 0.291	RV. Camarines Norte	0.015 - 0.435	RX. Misamis Oriental	0.078 - 0.809	

Table 5. Differences in Elevation between PGM-derived elevation and Leveling


Conclusion

- PGM-Leveling differences tend to increase form North to South of the Philippines with ±7cm in Northern Luzon, ±14 cm in South Luzon, ±12 cm in Cebu Province and ±50 cm in Mindanao
- Large differences can be attributed to geodynamic effects or levelling errors
- Discounting the large errors which needs further investigation, the rest of the country with good levelling data results in an accuracy of approximately 10 cm for the PGM2018.

Recommendations

- NAMRIA recommends the continuation of the validation process of the Philippine Geoid Model
- Re-leveling and re-adjustment of the National First Order Geodetic Level Network (applying orthometric correction)
- Densification of Land Gravity points (40K+ points until 2030) nationwide is also needed for the refinement of the PGM.

Maraming salamat po!

National Mapping and Resource Information Authority (NAMRIA) Lawton Ave., Fort Bonifacio, Taguig City

https://www.namria.gov.ph

geodesy@namria.gov.ph

(+63) 2 8884 2849

