

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

TomoScand

Ionospheric imaging

26.10.2023 Johannes Norberg

- Ionospheric electron density measurements
- Ionospheric imaging with TomoScand
- Recent developments

lonospheric electron density measurements

Ionosonde measurements

Ionosonde measurements

EISCAT UHF RADAR

SP, uhf, bella, 10 November 2021

GNSS measurements

Satellite clock offset (up to hundreds of km)

Relativistic clock correction <13 m

Satellite instrumental delays ~m

Geometric range ~20 000 km

Ionospheric delay 2-50 m

Tropospheric delay 2-20 m

Receiver clock offset <300 km

Receiver instrumental delay ~m

GNSS measurements

Satellite clock offset (up to hundreds of km)

Relativistic clock correction <13 m

EHI O AHA

Satellite instrumental delays ~m

Geometric range ~20 000 km

Ionospheric delay 2-50 m

Tropospheric delay 2-20 m

Receiver clock offset <300 km

Receiver instrumental delay ~m

Depends on the signal frequency

Vertical total electron content VTEC (TECU10¹⁶/ m^2)

350 km

Low Earth orbit (LEO) beacon satellite measurements

Radio occultation measurements

Frit Offit

lonospheric imaging

lonospheric imaging

Tomography

Tomography

- Little information on the vertical structure
- Additional regularising information is needed
- Ionospheric model?

TomoScand approach

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Gaussian Markov Random Field Priors in Ionospheric 3-D Multi-Instrument Tomography

Johannes Norberg[®], Juha Vierinen, Lassi Roininen, Mikko Orispää, Kirsti Kauristie, William C. Rideout, Anthea J. Coster, and Markku S. Lehtinen

ionososonde measurements

Predictive distribution for t_1

Reconstruction t_1

Reconstruction t_2

Validation results

JGR Space Physics

RESEARCH ARTICLE

10.1029/2022JA030794

Key Points:

- A Kalman filter application with Gaussian Markov random field priors enabling fast computation
- No external ionospheric electron

Model-Free Approach for Regional Ionospheric Multi-Instrument Imaging

J. Norberg¹, S. Käki¹, L. Roininen², J. Mielich³, and I. I. Virtanen⁴

¹Finnish Meteorological Institute, Helsinki, Finland, ²Lappeenranta-Lahti University of Technology, Lappeenranta, Finland, ³Leibniz Institute of Atmospheric Physics at the University of Rostock, Rostock, Germany, ⁴University of Oulu, Oulu, Finland

MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

a) Instruments, domain and grid

Longitude (°)

Simulation study

- Synthetic ionospheric model
- Chapman profiles
- Ionospheric trough
- Night-time E-region
- Measurement geometries from real measurements
- Errors and instrument biases added to simulated measurements

Real data validation

- EISCAT UHF incoherent scatter radar in Tromsø, Norway
- ESR 32m incoherent scatter radar in Svalbard
- Juliusruh ionosonde in north Germany

Figure 5. Comparison of measured real validation profiles, corresponding profiles from TomoScand reconstruction and IRI 2012 model from 9 November 2018. EISCAT ESR32 incoherent scatter radar is located in Longyearbyen, Norway (78.2°N, 16.1°E), UHF incoherent scatter radar in Tromsø, Norway (69.6°N, 19.3°E) and JR ionosonde in Juliusruh, Germany (54.6°N, 13.4°E).

Recent development

Problems with the current approach

Ionosonde locations

Ionosonde measurements

Ionosonde-based smooth non-uniform background

FINNISH METEOROLOGICAL INSTITUTE

Norberg, J., Vierinen, J., Roininen, L., Orispää, M., Kauristie, K., Rideout, W. C., Coster, A. J., & Lehtinen, M. S. (2018). Gaussian Markov Random Field Priors in Ionospheric 3-D Multi-Instrument Tomography. *IEEE Transactions on Geoscience and Remote Sensing*, 1–13.

Norberg, J., Käki, S., Roininen, L., Mielich, J., & Virtanen, I. I. (2023). Model-Free Approach for Regional Ionospheric Multi-Instrument Imaging. Journal of Geophysical Research: Space Physics, 128(1).

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

