

GNSS Signal Spoofing Tests

Dinesh MANANDHAR

Center for Spatial Information Science, The University of Tokyo

United Nations/Finland Workshop on the Applications of Global Navigation Satellite Systems

23 – 26 October 2023, Helsinki, Finland

dinesh@csis.u-tokyo.ac.jp

Contact: D. Manandhar, dinesh@csis.u-tokyo.ac.jp

Spoofing a GPS Watch

Mobile Phone Spoofing (Jakarta or Paris?)

Spoofing a Car Navigation System

The SPOOF Signal is received by GNSS Receiver.

Spoofing Targets, Methods and Types

Spoofing Target Device or System

Target Device or System		
Spoofing a GNSS Receiver	A GNSS receiver module or device A system only based on GNSS such as RTK, VRS, HAS, CLAS, MADCOA PPP etc.	
Spoofing a system that has a GNSS receiver	A system that uses GNSS for PNT as a primary source of PNT data. Other sensors if present may only work as secondary device or only provide dead-reckoning solutions such INS sensors. Examples: Car navigation system, drone, UAV, UMV, AIS, GPS/IMU	
Spoofing a system or an application that uses GNSS and other sensors for PNT solutions	A system or application that uses GNSS or other sensors to output PNT data even if GNSS signal is absent. Examples: Mobile phone, Mimamori Device, Google location engines	

Spoofing Methods and Types

Spoofing Methods	
Direct Attack	Connect the target device directly by a cable Spoof signal is not transmitted by antenna
Over-The-Air Attack (OTA)	Transmit spoof signal over-the-air

Spoofing Types	
Self-Spoofing	Spoof a receiver that is under own control
3 rd Party Spoofing	Spoof a receiver that does not belong to you Or you don't have control over the target receiver

OTA (Over The Air) Attack

Contact: D. Manandhar, dinesh@csis.u-tokyo.ac.jp

Self-Spoofing

3rd Party Spoofing

GPS Signal Power and Spoof Signal Power

ITU-R Regulation

level

Japanese Radio Regulation for License Free Weak Signal Transmission

https://www.tele.soumu.go.jp/j/ref/material/rule/index.htm

GPS Signal Power

Mobile phone, WiFi, BT etc. have power levels -130 dBm above -111dBm, much higher than GPS Signal Power Contact: D. Manandhar, dinesh@csis.u-tokyo.ac.jp

GPS L1C/A Signal Power at Receiver Antenna: -130 dBm or -193 dBm/Hz or -105 dBm/m2

Free Space Propagation Loss (FSPL)

Spoofer Power Settings

Spoofing Test Methods

Direct Attack (DA) Test

Spoofing Test: Power Control

Spoof signal is transmitted before the receiver power is turned on

Spoofing Test: Power Control

Spoof signal is transmitted after the receiver power is turned on

Spoofing Test: Power Control

<u>SPOOFING Signal Power</u> <u>is less than TRUE Signal</u> <u>AUTH Status : PASS</u>	<u>SPOOFING Signal Power</u> <u>is slowly increased to</u> <u>overcome the TRUE Signal</u> <u>AUTH Status : Changes from</u> <u>PASS to FAIL</u> <u>NAV BIT Error may happen in</u>	<u>SPOOFING Signal</u> <u>Power</u> <u>is more than</u> <u>TRUE Signal</u> <u>AUTH Status :</u> <u>FAIL</u>	SPOOF Signal Power is reduced and kept at about 3 - 6dB above the TRUE Signal to Keep Lock on SPOOF Signal
	the Yellow Zone		AUTH STATUS : FAIL

Contact: D. Manandhar, dinesh@csis.u-tokyo.ac.jp

Presence of high level noise This requires longer integration of data More processing power

Presence of noise

Very small noise

Contact: D. Manandhar, dinesn@csis.u-tokyo.ac.jp

True Signal vs. SPOOF Signal when attacked by a Spoof Signal

Slide : 23

Spoofing Attack Video

Summary

- Spoofing impacts on receivers as well as GNSS based systems shall be studied in detail.
 - However, it is quite complex to understand spoofing attacks.
- Anti-spoofing solutions require spoofing detection methods
- Thus, we recommend and request the stakeholders for support to conduct spoofing-related studies, field tests etc. through the IPNTJ, working group.