The role of the ionosphere in the space weather

Lucilla Alfonsi lucilla.alfonsi@ingv.it

Thanks to Luca Spogli (INGV) and Jayachandran (UNB)

United Nations Workshop on the International Space Weather Initiative: The Way Forward 26 - 30 JUNE 2023 VIENNA, AUSTRIA

Space Weather

Space weather refers to the environmental conditions in Earth's <u>magnetosphere</u>, <u>ionosphere</u> and <u>thermosphere</u> due to the <u>Sun</u> and the <u>solar wind</u> that can influence the functioning and reliability of spaceborne and ground-based <u>systems</u> and <u>services</u> or endanger property or human <u>health</u>. [European Space Agency]

The ionospheric electron density and the height can be derived from radio probing (ground and space-based) exploiting the ionosphere property of influencing the radio wave propagation (from working frequancies spanning from kHz to GHz range).

In-situ satellite measurements exploit the plasma property of the ionosphere deriving its electron density, electron temperature, ion drift and velocity.

The combination of different kind of measurements is very informative to study the plasma irregularities, but...

Irregularities* in a nutshell

*from a GNSS perspective

HORIZON 2020

The combination of different kind of measurements is very informative to study the plasma irregularities, but...

- Different observation geometry
- Different sampling

...

- Different working frequency
- Different spatial coverage
- Different temporal coverage
- Differente metrics and standard

METRICS and STANDARD

a common language still missing in the ionospheric community but crucial for space weather

Instrument	Data metrics	Data standard
lonosondes and Digisondes	\checkmark	\checkmark
Inchoerent Scatter radars	\checkmark	\checkmark
HF-backscattering radars	\checkmark	\checkmark
Ground-based GNSS receivers	X	\checkmark
Space-based GNSS receivers	X	\checkmark
In situ LP/TI	X	\checkmark

www.eswua.ingv.it

Loss of lock

$$S_4^2 = \left(\left\langle I^2 \right\rangle - \left\langle I \right\rangle^2 \right) / \left\langle I \right\rangle^2$$

Ampl.

$$\sigma_{\varphi}^{2} = \left\langle \varphi^{2} \right\rangle - \left\langle \varphi \right\rangle^{2}$$
Phase

What causes phase and amplitude fluctuations in the GNSS signals?

Scale size range: full ionospheric spectrum Affects: phase Physical mechanism: phase mixing Effect: deterministic fluctuations Mitigation: IFLC (1st ionospheric order) Positioning issues: Cycle Slips, Losses and Lock, Phase Noise, 2nd order ionospheric effect (fraction of cm), etc. Scale size range: up to Fresnel's scale
Affects: amplitude, phase
Physical mechanism: decorrelation, interference
Effect: stochastic fluctuations
Mitigation: e.g., Conker et al., Aquino et al., etc., de-weighting methods.
Positioning issues: stochastic nature is challenging, TEC cannot be calculated

Phase "fluctuations":

2 mechanisms: -<u>diffraction</u> (small-scale irregularities) -refraction (all scale range and scaling with 1/f)

Stochastic and deterministic effects

If cutoff frequency is "wrong" (ususally fixed at 0.1 Hz), detrending is wrong, σ_{Φ} value includes mainly phase fluctuations due to refraction, i.e., mostly deterministic effects. **Overestimated** σ_{Φ}

Scintillation on L1?

Scintillation on L2?

NO! Ionosphere-Free Linear Combination says NO!

$$IFLC = \frac{\Phi_1 f_1^2 - \Phi_2 f_2^2}{f_1^2 - f_2^2}$$

YES! Ionosphere-Free Linear Combination doesn't account for all fluctuations

If properly detrended, SigmaPhi has almost the same information content of S4

Ghobadi et al. (2020). *GPS Solutions*

Spogli et al. (2021). *IEEE Geoscience and Remote Sensing Letters*.

This is an issue for high-latitude only, where plasma convection is way larger

0.1 Hz cutoff is not that bad at low latitudes...