The role of the ionosphere in the space weather
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Space weather refers to the environmental conditions in Earth's
S p a C e We at h e r magnetosphere, ionosphere and thermosphere due to the Sun
and the solar wind that can influence the functioning and
reliability of spaceborne and ground-based systems and services
or endanger property or human health.
[European Space Agency]
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The ionospheric electron density and the height can be derived from radio probing (ground and

space-based) exploiting the ionosphere property of influencing the radio wave propagation (from
working frequancies spanning from kHz to GHz range).

In-situ satellite measurements exploit the plasma property of the ionosphere deriving its electron
density, electron temperature, ion drift and velocity.
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The combination of different kind of measurements is very informative to study the plasma irregularities, but...
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Irregularities® in a nutshell o
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The combination of different kind of measurements is very informative to study the plasma irregularities, but...
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METRICS and STANDARD

a common language still missing in the ionospheric community but crucial for space weather
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A simplified picture
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What causes phase and amplitude fluctuations in the GNSS signals?

lonospheric irregularities

Refraction

Scale size range: full ionospheric spectrum

Affects: phase

Physical mechanism: phase mixing

Effect: deterministic fluctuations

Mitigation: IFLC (15t ionospheric order)

Positioning issues: Cycle Slips, Losses and Lock, Phase Noise, 2" order
ionospheric effect (fraction of cm), etc.
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Scale size range: up to Fresnel’s scale

Affects: amplitude, phase

Physical mechanism: decorrelation, interference

Effect: stochastic fluctuations

Mitigation: e.g., Conker et al., Aquino et al., etc., de-weighting methods.
Positioning issues: stochastic nature is challenging, TEC cannot be calculated



What is scintillation?

Phase “fluctuations”:

2 mechanisms:
-diffraction (small-scale irregularities)
-refraction (all scale range and scaling with 1/f)
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Stochastic and deterministic effects

If cutoff frequency is “wrong” (ususally fixed
at 0.1 Hz), detrending is wrong, G4 value
includes mainly phase fluctuations due to
refraction, i.e., mostly deterministic effects.
Overestimated 64,

A deeper look
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What is scintillation?
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What is scintillation?

0.05

0.00 Scintillation on L1?

Detrended Phase
L1 (m)

-0.05

0 20 40 60
Time (Minutes)

0.05

000 '~ Scintillation on L2?

Detrended Phase
L2 (m)

-0.05

0 20 40 60
Time (Minutes)

0.05

0.00 W"‘M YES! lonosphere-Free Linear Combination doesn’t account for all fluctuations

lonosphere-Free
Combination (m)

-0.05

0 20 40 60
Time (Minutes)

*adapted from a slide by Jayachandran (UNB)



(m)

Detrended Phase
(m) Lﬁj

Detrended Phase
g

ComBination (m)

What is scintillation?
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Ghobadi et al. (2020).  Spogli et al. (2021).
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This is an issue for high-latitude only, where plasma convection is way larger
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0.1 Hz cutoff is not that bad at low latitudes...




