Scintillation Observations with a Low-Cost GNSS Receiver

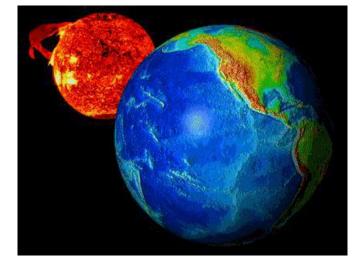
Dr. Keith Groves

Institute for Scientific Research, Boston College

Keith.Groves@bc.edu

United Nations Workshop on the International Space Weather Initiative

Vienna, Austria


26-30 June, 2023

Acknowledgments

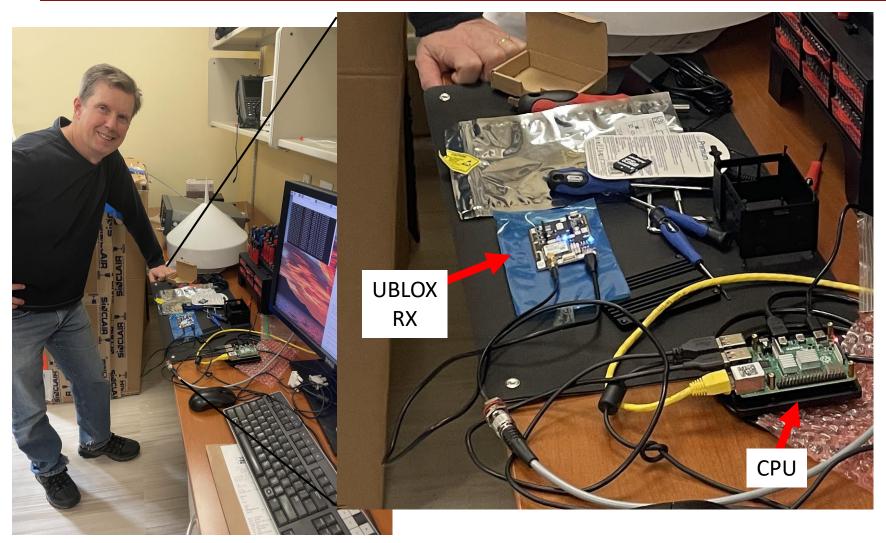
- **Dima Paznukhov, Ted Beach, Chris Bridgwood** Boston College; system procurement, integration and data collection
- Anton Kascheev, Univ of New Brunswick; system options and data acquisition software kernel
- Dinesh Manandhar, CSIS; pioneering analysis and development of systems' capabilities
- **Bruno Nava**, ICTP; early exploitation and TEC demonstration and comparisons
- Sharafat Gadimova, UNOOSA; promotion and formation of formal ICG working group to coordinate and motivate activities

Low-Cost GNSS Receivers for Space Weather Monitoring

- What does low cost mean and why is it important?
- The low-cost BC system
- Preliminary scintillation observations from Ascension Island
- Summary

- Similar to computer technology, the real cost of GPS/GNSS receivers has been decreasing for the last three decades, but a capable truly low cost GNSS system has only become possible in the last 1-2 years
- When system reproduction costs fall below \$1,000 (\$500) dollars, the ability to proliferate installations becomes much more feasible
- Initial system cost is just one, albeit critical, barrier to the challenges of launching a successful remote sensing project
 - Coordination, commitment and care are necessary to achieve a worthwhile scientific return on the investment

BC Ublox System Components (as fielded)



Item Description	Part/Model Number	Qty	UOM	Value (US)	Mfg
TOPGNSS L1/L2 Antenna	TOP106	1	ea	\$133.95	TOPGNSS
	RASPBERRY PI 4 MODEL B -4GB-US	1	ea	\$161.17	RAKwireless
RAK RASPBERRY PI 4 BASIC KIT /4G	STANDARD	1 ¹			Technology Ltd
ARDUSIMPLE RTK2B GPS/GNSS RTK ZED-F9P EVAL KIT	AS-RTK2B-F9P-L1L2-NH-02	1	ea	\$233.78	Ardusimple
microSDXC Memory Card w/ SD Adapter, 64GB	VER44084RZ1	1	ea	\$11.95	Verbatim
Total Cost					

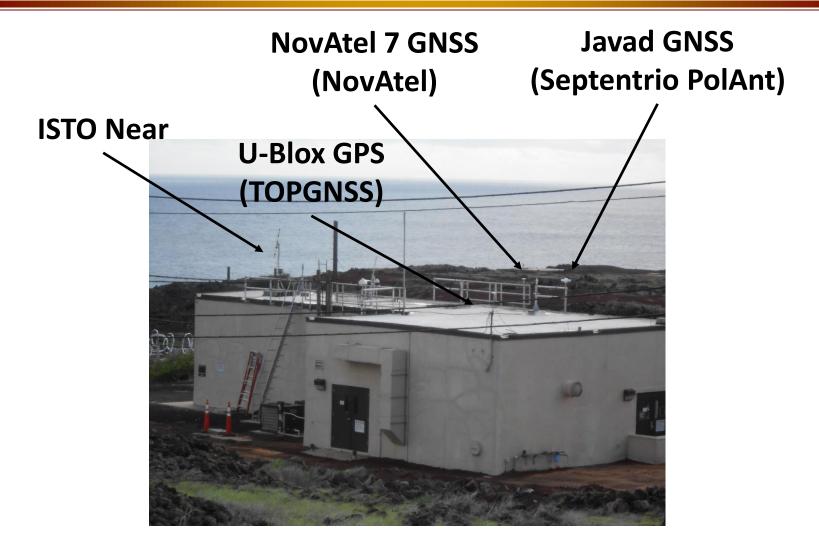
- Supply chain issues have resulted in a systemic shortage of low-cost Raspberry Pi computers
- We had to purchase a kit with enclosure (\$161), but the base price for the Raspberry Pi 4 with 4GB ram is \$54, 2GB version is \$35 (not tested, but probably adequate)
- A capable system can be produced for < \$500 USD
- This unit provided 20 Hz C/No measurements with 1-dB-Hz resolution
- Concern: rapid pace of hardware technology development means that today's chipset may not be available tomorrow: need to ensure that manufacturers retain capabilities in future offerings

The Ardusimple FTK28 ZED-F9P (UBLOX) Rx

Inexpensive, compact and low power consumption

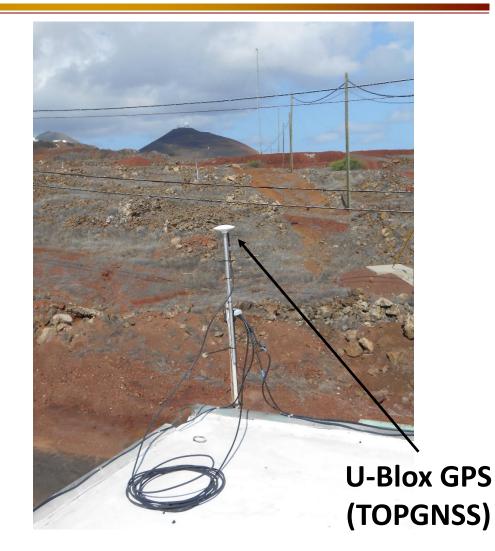
Ascension Island Measurements 2023

SSN (NOAA)


- BC recently operated a variety of receivers under strong scintillation conditions at Ascension Island in the S. Atlantic (7.9 S lat, 14,4 W lon, magnetic anomaly site)
- Solar flux was nearly representative of solar maximum conditions
- Prelminary Ublox results from 22 March will be presented here

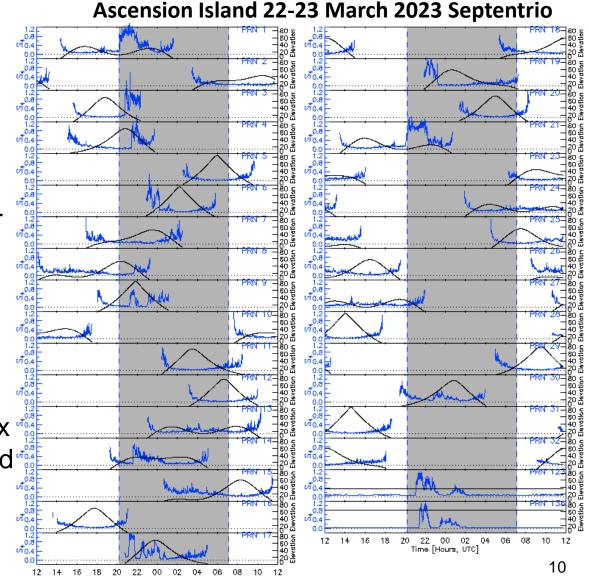
Scintillation Activity Log

		1 0		150	•					
19-Mar-23 20-Mar-23 21-Mar-23 23-Mar-23 23-Mar-23 24-Mar-23 25-Mar-23 26-Mar-23	78 79 80 81 82 83 84 85		(GNSS S4 ~ 1.0 at EL = 75 deg Some analysis complete	50 24	25					
27-Mar-23 28-Mar-23	86 	Strong scintillation (incl. GPS) (GNSS S4 \sim 1.0 at EL = 85 deg) No VHF scintillation, probable GPS to north								
29-Mar-23		No VHF scintillation, probable GPS t		Receivers Tested						
30-Mar-23	<u>-89</u>	<u>No scintillation</u>	Receiver Manufacturer	Receiver	Antenna	Antenna Model				
31-Mar-23 <u>01-Apr-23</u>	90 	Strong scintillation (incl. GPS) No scintillation		Model	Manufacturer					
02-Apr-23	92	Strong scintillation (incl. GPS)	Septentrio (2)	PolaRx5S	Septentrio	Veraphase 6000				
03-Apr-23 04-Apr-23	93 94	Weak VHF (some GPS to North) (ma Strong scintillation (incl. GPS)	NovAtel	GPStation-6	Antcom	123GM1215A				
05-Apr-23	95	Brief burst of strong scintillation (in	Javad	Delta-3Sa	Septentrio	PolaNt				
06-Apr-23 96 Brief burst of strong scintillation (ir	NovAtel	PwrPak7	NovAtel	GNSS-850						
			CU Boulder	EDAS	Trimble	Zephyr 3 Base				
			Ardusimple (u-blox	RTK2B	TOPGNSS	TOP106				
			ZED-F9P core)							
			Northrop Grumman	ISTO	Northrop Grumman	ISTO				



Ascension Island Campaign Set-Up

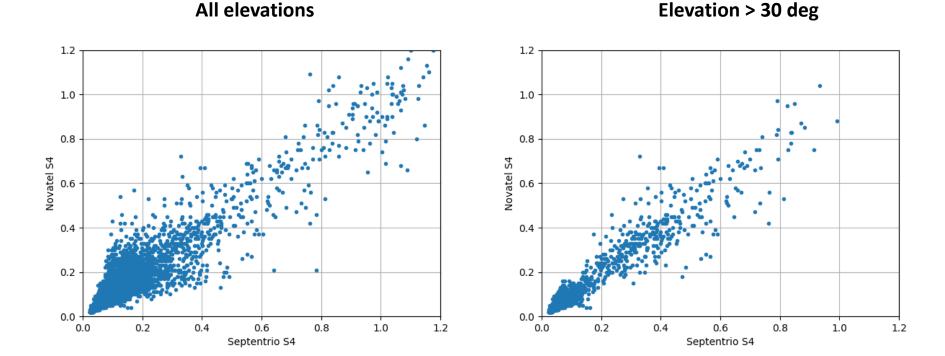
- U-Blox antenna is an inexpensive, GPS-only unit for these observations, with virtually no multi-path inhibiting technology
- Elevated terrain, ocean reflections and local metallic structure all contribute to relatively high multi-path environment at low elevation angles



Evening of 22 March 2023

- Extended (brief) periods of strong scintillation on low (high) elevation links
- Representative of near solar maximum conditions for solar cycles 24 & 25
- Note that strongest activity occurs soon after sunset; higher flux will extend duration and severity

Time [Hours, UTC]

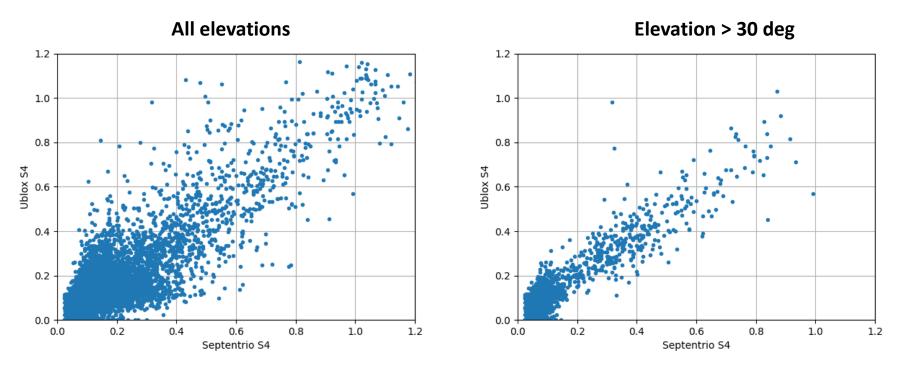


Preliminary Results: Comparison of Two Research Grade Receivers

Novatel 6 vs Septentrio PolaRx5s

2023/03/22 12UT - 2023/03/23 12UT

• Low elevation measurements include enhancements due to multi-path associated with specific antenna characteristics and siting factors

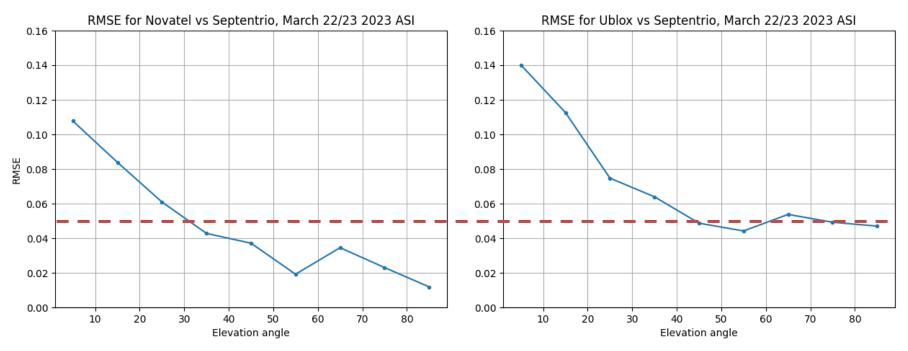


Preliminary Results: Comparison of Ublox with Septentrio PolaRx5s baseline system

UBLOX vs Septentrio PolaRx5s

2023/03/22 12UT - 2023/03/23 12UT

- There is a bit more scatter than with the Novatel 6 data, but with 1 dB C/No resolution this is not surprising; overall it is an excellent result
- The low-cost antenna shows significant multi-path noise below 30 deg elev



RMSE errors for each receiver relative to Septentrio PolaRx5s

Novatel 6

Ublox

- At about 40 deg elevation the Ublox seems to hit a floor around the target ٠ RMS error of ~0.05 S4 units; possibly due to the 1 dB C/No resolution
- BC has signed a NDA with the manufacturer and may be able to influence ٠ improvements in the future

- A low-cost dual or tri-band GNSS system for monitoring space weather is feasible and may already exist
 - Space weather monitoring implies TEC and scintillation (both phase and intensity)
- Results presented here are preliminary but promising!
 - Full analysis of performance including tracking and other characteristics are in progress
- Scientific programs to exploit these inexpensive systems should be developed, recognizing that initial hardware cost is just one component to be considered for a successful project
- Boston College plans to continue inexpensive sensor analysis and development and pursue opportunities to expand GNSS monitoring in the near future