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I opace |leather & models

. ICMEs cause
the most
severe
transient
disturbances in .

_the héliosphere ~

and at the.Eart

Sun phenomena
affect the Earth
magnetic field,
ionosphere and
thermosphere

ICME-related
effects can
strongly
influence our
everyday life.



Physics-based & Empirical models

Physics based models apply the laws of classical physics.

They are deterministic.
Explanation and prediction of natural phenomena are based on
the mathematical representations of physical laws.

+ . . . .
: “Empirical models are descriptive.
* . ¢ _They are based on data.
~ They do notrely on the use of physics.
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However...

Neither the physics-based nor
the empirical approach ignores the other.

Because:

Physicists rely on
observations to
develop and validate
physical models and

estimating key
quantities like initial
and boundary
conditions.

The construction of
statistical/empirical
models is guided
by physics that
determines the
variables and the
data sets to be
analyzed.




Based on a analytical description of the ionosphere with
functions derived from experimental data.
Model systematic ionospheric variation from historical

data.

Data sources are ionosondes, topside sounders,
incoherent scatter radars, rockets and satellites.
Mainly used for assessment and prediction purposes.
Easy to use.

Describe ionospheric climate.

Give realistic representation of the ionosphere in the
areas sufficiently covered by observations.




International Reference lonosphere (IRI)

The IRl is an international project sponsored by the
Committee on Space Research (COSPAR) and the

International Union of Radio Science (URSI). These Topside parameters

organizations formed a Working Group in the late sixties
to produce an standard empirical model of the
lonosphere, based on all available data sources. Several
improved editions of the model have been released.

Input
Year, month, day, hour, geographic or geomagnetic coordinates, various
optional input.

Output

Electron concentration, electron temperature, ion temperature, ion
composition (O, H*, He*, NO*, O%,), ion drift, ionopsheric electron content
(TEC), F1 and spread-F probability Nve NmE  NmFl

g N ey

IRl Web http://irimodel.org/

Buildup of the IRI electron density profile and its
separation into different regions.


http://irimodel.org/

NeQuick

NeQuick is a 3D and time dependent ionospheric electron
density model developed at the Abdus Salam International
Centre for Theoretical Physics (ICTP), Trieste, Italy and at the

University of Graz, Austria. It is a quick-run model particularly
made for trans-ionospheric applications. It allows to calculate
Ne at any given location in the ionosphere and TEC along any
ground-to-satellite ray-path.

Input
Year, month, day, time, geographic coordinates of lower and higher endpoint,
R12 or daily F10.7 solar flux.

Output
electron density along the path and slant TEC

NeQuick2WEB — http://t-ict4d.ictp.it/nequick2/nequick-2-web-model

NeQuick2 Year2000 Month 4 UT 1200 (45°N,14°E) Azimuth 180°

TEC 90° = 41.4 TECU
TEC 60° = 626 TECU

1.x10"
N(s) [m’al



http://t-ict4d.ictp.it/nequick2/nequick-2-web-model

..‘ o’ o

02

olll events forecasting
using Empirical Models




The impact of Space [Neather- from “climate” to “weather”

e Like the lower atmosphere the ionosphere exhibits both a “climate” and a
“weather" variability. The ionospheric “climate” has been successfully
represented by models of different types.

e The |ono'spher'|c,weather variability is mostly controlled by the “Space Weather
conditions" .
° -The b|g chaIIenge of ionospheric modelling is to take into account the impact of

L varylng Sp'ace Weather conditions to reproduce the observations.

(" Systemic )
approach:
coupled
physics-based
\. models /

Data
Assimilation or

Ingestion In
models
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P. Bauer, A. Thorpe and G. Brunet, “The quiet revolution of NWP”,
Nature, 525, 47-55 (2015)
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Data Assimilation

® NWP-> initial-value problem: "given an estimate
of the present state of the atmosphere, the model
simulates (forecasts) its evolution.”

e Data Assimilation:
“using all the available information, to determine
as accurately as possible the state of the
atmospheric (or oceanic) flow."”
Talagrand, 1997

® Such techniques have also been introduced into
ionosphere research and application.

® Increasing availability of experimental data (solar
data, ionospheric ground and space-based GNSS
data, ionosonde data and radar data, RO data).
These models and schemes are of different
complexity and rely on different kinds of data
(GAIM, IDA3D, etc).

Observations

=2

Initial Conditions

Forecast Model

/[ 1\ Operational
J forecast

Analysis and
Balancing

at
D

-

t hs forecast
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) Data Ingestion

’ TEC

(Y N\ /
Minimization Algorithm

) * ' | VTECexp — VTECmod |
*Calculate TEC

CUEHOT(EMll along any ray path

(

-60
Longitude (deq)

® |sone of the earliest and most

= . (IG, Az)
: \ simplistic approaches to data
. 7 assimilation.
. 3D electron density of the -foF2 maps
« ionosphere that hmF2, Nmax, etc.

reproduces the starting

source data ® The model states are directly

replaced with the observations.




IRTAN

« IRl Real-Time Assimilative Modelling (IRTAM) system assimilates digisonde data from the GIRO network into
the IRl model.

« The IRTAM approach is based on the ITU-R models for the F2 peak plasma frequency foF2 and the propagation
factor M(3000)F2 that are being used in IRI.

» IRTAM uses the CCIR set of functions to describe the global and spatial variation of the difference between the
digisonde measurement and the IRI prediction of foF2.

IRTAM v0.3A 2023.06.22 16:30:00 UT

Galkin, I. A., B. W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO data into a real-time IRI, Radio Sci., 47, RSOL07
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The ICTP ingestion technique

Effective F10.7 (Az)
input values that
minimizes the difference
between an

experimental and the
corresponding
modeled
TEC are calculated

Applying this concept
to all vertical TEC
values of a global

experimental vertical
TEC map a global
grid map of Az is

obtained

The Az grid is used as
input for NeQuick2,
providing a 3D global
representation of the
electron density of the
ionosphere

Nava, B., S. M. Radicella, and F. Azpilicueta (2011), Data ingestion into NeQuick 2, Radio

Sci., 46, RS0D17, doi:10.1029/2010RS004635.).

It can therefore be
used to retrieve foF2
values where needed
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Dl application

foF2 ITUR 20131002 14UT foF2 NeQuick ingested storm 20131002 14UT
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foF2 (MHz) foF2 (MHz)

ITU-R foF2 map computed with daily F10.7 for 2" October 2013 (left) and global map of foF2 for 2" October 2013 obtained after the
CODE GIM VTEC ingestion into the NeQuick model (right). % ot

Radicella and Migoya-Orué, 2021, Elsevier Book GPS and GNSS Technology in Geoscience, Citapter11.
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Migoya-Orue et al., 2015, Adv. Space Research

foF2 comparison during storm days April 2000 - .
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 Locally Adapted NeQuick
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Data Assimilation into NeQuick through KF technigue @ |
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Mungufeni et al., J. Space Weather Space Clim. 2022
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Locally Adapted NeQuick
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\leQuick ingestion validation

NEQUICK STANDARD TECMAPS
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Conclusions



CONCLUSIONS

® The models faced a real challenge in their ability to forecast and nowcast local

and global ionosphere effects of Space Weather events.

® The assimilation/ingestion of ionospheric data into empirical models allows to
provide global and regional 3D specification of the electron density of the
ionosphere and is able to improve the challenge that represents the
reproduction of the ‘weather’ variability of ionospheric parameters during SW

events.

® It has been showed examples of TEC, Ne and foF2 forecast and representation
with IRl and NeQuick by assimilating/ingesting different ionosphere data series *

and some comparisons with observations. o
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