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Disclaimer: I will go back to many concepts and remarks from yesterday’s talks! 



Introduction

Complex and highly coupled

system

Time/spatial scales

Intrinsically unbalanced

problem

Difficult to model (e.g. too

expensive to run physical

models, )

   . . . 

 
PRESTO/SCOSTEP (*) yesterday's talk by Sandro

SWx



Introduction

Difficult to forecast the impact!

Regular variability (solar cycles, daily, etc) +
Irregularities (e.g. SWx)

Global - Regional - Local (different scales,
different problems). -> systemic view: all
together!

Instruments deployment (ground and space-
based)

Molina +, 2020

HSS/CIR 
Kp=7
7 October 2015

Iospheric response



What about the data

Huge amount of heterogeneous data 

Data availability (?) -> particularly in R2O

Data quality: 

high quality = science; less quality = operations; levels of

pre-processing 

In ML: Better no data than bad data (*).

Understand the data-> e.g. calibrated TEC derived from

GNSS  (*)

Data covers partially the domain

Integration & interoperability:

Formating madness! resolution madness!

Produced by instruments, interpreters/forecasters,

simulations or models, metadata (No standard data

model)

Not straightforward to understand (learn your physics!)

Data preparation is expensive 



What about ML

No generalization

Easy to implement (+ toolboxes, better

hw) - > not easy to adapt 

White - grey - black box 

More predictive capabilities, less

interpretability (DL) - > XAI methods

We need + robust/mature algorithms 

Barredo +, 2019

data-driven modelling



Global TEC forecast 24 hs ahead using DL
Propose a semi-operative prototype

Objectives: 
An application

2 stages: a) single station forecasting (ML);
b) extended forecasting 
3 meridional sectors covering low, mid &
high latitude
Covering land & oceanic regions
Input: TEC from GIMs  + External input (Kp)

Cesaroni +, 2020

Molina  +(submitted)



Data preparation &
Feature selection

Dataset: 
2005 - 2016
splitting strategy: 99% (99 train/1val) - 1% test (~43 days)
+ cases study: geomagnetic storms in 2017

Resolution (re-sampling): 
TEC from GIMs - 2 hs resolution
Kp - 3hs resolution > K Nearest-neighbor interpolation 

Smart weight initialization (kernel initialization):
GlorotNormal distribution + proper activation function (e.g.
tanh).

TEC - single ST Histogram

St 01  TEC - dataset (2005 - 2016)

Loosely physics-informed approach



ML modelling

3 ML techniques: 
2 RNNs (LSTM & GRU)
CNN (1D)

Time series 
Hyperparameter tuning:                          
 grid search kernel size = 2

CNN: 

# hidden layers
(5,10,15,20,50,100 cells)
batch size (16,32,64,128)
#epochs (iterations)
(5,10,15,20,30,40,50,100,20
0,500,1000)

 

Maintain order 
Memory (ht) 
Backpropagation through time
Prone to overfitting, vanishing
gradient problem 
LSTM & GRU -> gated cells -> long-
term but not that long

RNNs: 



ML modelling

Forecasting 24 hs ahead  (quiet day)
RMSE < 3 TECu
CNN best at any station (- St16,17,18 ->
TECu<=1 -> quiet day)
Low lat + oceanic stations -> + challenging

TEC Kp

t0

t1

...

t0

t1

...

Kernel = 2

Why these results? 
LSTM & GRU -> difficult to catch fast
changes and peaks
CNN (1D) -> spatial relationship = short
term relationships

RMSE



ML modelling
In general: in SWx, few extreme cases
(unbalanced datasets) -> forecasting may fail
when new data arrives (generalization is a
problem)->  Incremental learning

Test set -> 43 days wiht the basic models 
Test set -> 43 days with the models  + incremental

learning (updating each 24 hs ) 

RMSE



ML modelling

We considered cases study from 2017 under
different geomagnetic conditions

base model (CNN) CNN + incremental learning actual data

Molina  +(submitted)



Software development -> in production

Trustworthiness is key (e.g.
uncertainty quantification) 

Better data quality and real-time
data

Better feature selection/engineering
(e.g.. choose wisely the geomagnetic
index, etc) 

Data enhancement/ surrogate data

The most expensive and time-
consuming stage is data preparation ->  
we need inter-operational data 

Continuous monitoring and validation

 
Hidden Technical Debt in Machine Learning Systems, D. Sculley et.al (2015)

The modelling is just a small part of an operational
system

R2O
Considerations



Next steps

Vaswani  +, 2017

More computationally
efficient
Eliminates recurrence ->
positional encoding
Multi-head -> different
scales

Self-attention-based models
(transformers):

Catch fast and far information (different
scales) 
"Attend" to the more influential features
within the data



Conclusion

3 techniques (LSTM, GRU and CNN): CNN obtain better performance and is able to
catch fast changes within the time series even during geomagnetic storms.

Considerations for operative implementation: Incremental learning

Still, many things to consider: better data quality and real-time data, better
hyperparameter tuning, better feature selection, etc.

Further works:  
change the architecture -> self-attention-based ML
better data, better features
Regional forecasting (different target parameters, e.g. foF2)

María Graciela Molina
gmolina@herrera.unt.edu.ar

(* )Final Global TEC maps from IGS and developed by the Universitat Politècnica de Catalunya
(UPC) are available at ftp://cddis.gsfc.nasa.gov. Kp data are available on NOAA Website. The
SymH data was provided by the WDC for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-
u.ac.jp/wdc/Sec3.html).


