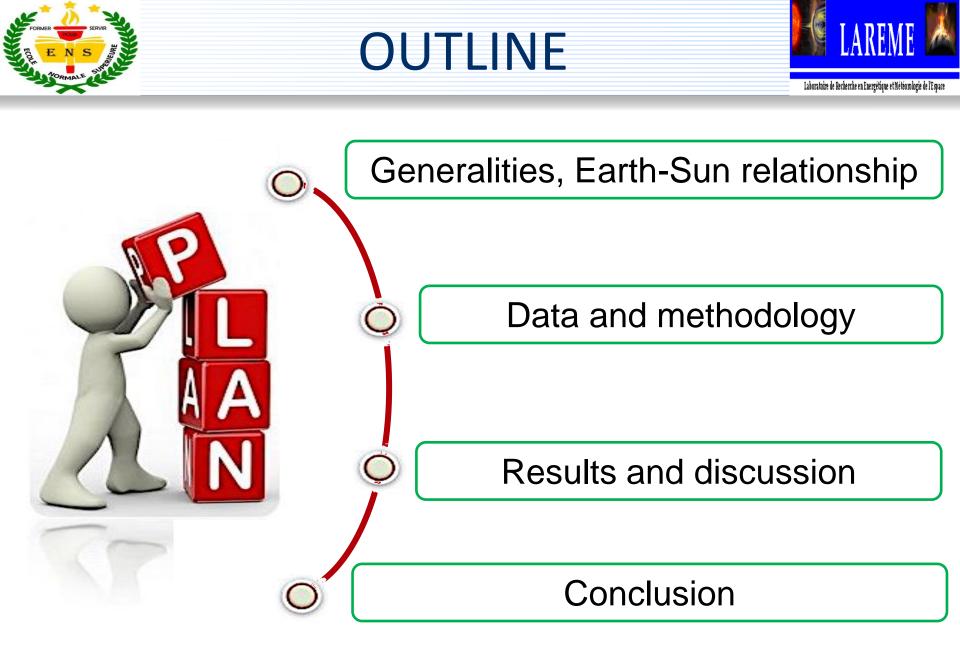
International Space Weather Initiative: The way Forward

Austria (Vienna), 26-30 June 2023

Effect of Turbulence of High-Speed Solar Winds upstream of the Earth's Magnetosphere: Case of the Outer Minima of Solar Cycles 20, 21, 22, 23 and 24.

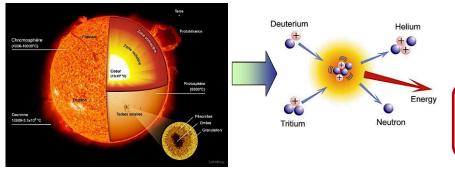
Presented by

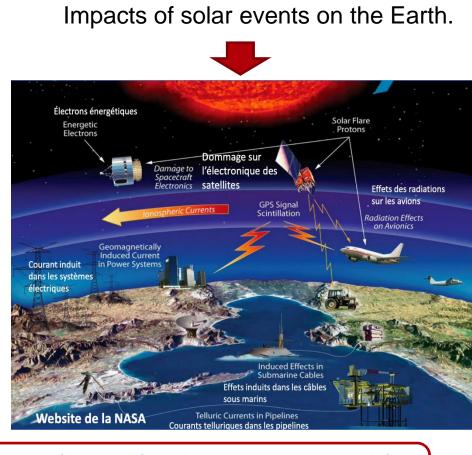
Inza GNANOU, PhD in Space Weather


Teacher of Applied Physics at École Normale Supérieure (ENS), Burkina Faso. E-mail : <u>gnanouinza@gmail.com</u>

nternational Committee on Global Navigation Satellite Systems

Laboratoire de Recherche en Energétique et Météorologie de l'Espace


3

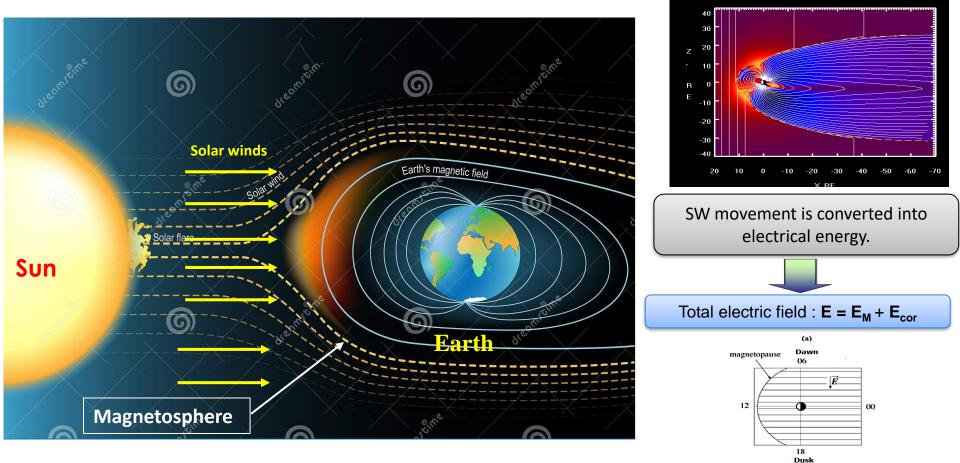

THE SUN: EMISSIONS & IMPACTS

GENERALITIES

DYNAN	AIQUE ET EFFETS PEREN	ANENTS SUR LA TERI	RE
	Sunlight ₍ 8 minutes constant)	Lumière	
AT A A	Flare x-ray En	iission éruption: émission ray	vons X
	lasts a few da	ys Radio Noise Emission Bruit radio	
		Energetic Particles Particules én	particles ergétiques
	Orage	s magnétiques	few days Magnetic Storm
	Vent solaire régulier arr		r Wind ays constant
	8 MINUTES 15 MINUTES	1 DAY 4 DAYS	10 DAYS

Emissions from the Sun

The energy of the Sun comes from nuclear reactions that occur at the center by fusion of H atoms into He. The average surface temperature is 5770 K. That of the nuclear core is estimated to be $\approx 15.10^{6}$ °C, perhaps a little more. The Sun loses about 10⁹ kg of plasma per second.


GENERALITIES

Laboratoire de Recherche en Energétique et Météorologie de l'Espace

4

THE EARTH'S MAGNETOSPHERE :

Magnetosphere :

Earth shield against solar energy ramparts, controlled by the Earth B.

GENERAL OBJECTIVE:

 Understanding the dynamics and structure of the Earth's magnetosphere via High-speed solar winds (HSSW) during the outer minima (descending phases) of solar cycles (SC) 20 to 24.

• SPECIFIC OBJECTIVES:

- Extracting HSSW from 1964 to 2019 → **05 SC** (20, 21, 22, 23 & 24).
- Determine the outer minima of SC 20-24 from the Wolf number Rz
- Quantify solar fields and power upstream of the Earth's magnetosphere during the 05 peaks.

Laboratoire de Recherche en Energétique et Météorologie de l'Espace

DATA :

- ♦ SIDC : $(https://www.sidc.be/SILSO/datafiles) \mapsto Rz$
- ISGI: «<u>http://isgi.unistra.fr/oi_data_download.php</u>» → Aa
- ↔ OMNIWeb : «<u>http://omniweb.gsfc.nasa.gov/form/dx1.html</u>» \mapsto V_x, Ey, B, Bz, n.

QUANTITY CONTROLLING EARTH'S MAGNETOSPHERE:

(Wu Lei and al., 19 Revah and Bauer, 19		{1 }
(Wang et al., 2014)	$E_{in} = 3.78 \times 10^7 n^{0.24} V^{1.47} B_T^{0.86} \left[\sin^{2.70} \left(\frac{\theta}{2} \right) + 0.25 \right]$	{2 }
(Milan et al., 2012)	$\Phi_{\rm D} = 3.3 \times 10^5 V_x^{4/3} \mathrm{B}_{yz} \sin^{9/2} \left(\frac{\theta}{2}\right)$	{ <mark>3</mark> }

DATA & METHODOLOGY

🗳 LAREME 🚨

Laboratoire de Recherche en Energétique et Météorologie de l'Espace

PIXEL DIAGRAMS (BARTEL'S DIAGRAMS)

				Curre	ent cl	ass																							
1-Jan			2017			<u>511</u>	404	434	461	601	691	686	675	647	570	487	396	365	368	334	317	311	474	592	546	499	508	V (km	/s)
23-Jan	439	348	341	(419)	586	520	438	440	626	681	663	627	566	579	562	505	456	419	419	396	347	329	313	307	366	481	512		
19-Feb	556	503	430	405	471	599	512	419	369	397	509	685	680	655	620	604	576	533	520	467	391	392	340	332	351	376	345		650
18-March	321	315	315	496	642	609	552	476	387	531	673	642	625	670	584	488	420	419	412	470	422	531	486	427	435	438	394		
14-April	399	334	340	312	321	408	553	552	690	723	672	593	524	462	404	378	372	378	410	379	(344)	382	344	349	368	367	364		600
11-May	373	387	320	321	(431)	568	488	405	457	655	631	545	508	449	373	323	(326)	360	360	483	399	361	373	398	425	369	350		
7-June	336	308	(315)	290	(329)	445	496	469	411	477	479	561	475	376	336	330	336	375	439	516	465	425	408	346	373	449	(419)		550
4-July	357	317	336	387	335	461	558	583	480	395	359	327	449	520	541	431	406	614	569	586	635	586	580	455	436	407	361		
31-July	339	378	391	373	567	667	613	500	432	404	393	403	550	573	475	401	378	481	573	672	696	585	554	467	404	348	340		500
27-Aug	336	294	330	363	(529)	602	584	506	492	529	(446)	(526)	740	585	498	593	(499)	459	(438)	664	676	644	617	512	459	413	361		
23-Sept	361	336	367	320	486	654	592	502	461	427	403	365	384	422	398	412	362	323	414	513	579	668	595	543	460	379	392		450
20-Oct	420	(389)	413	375	437	592	542	445	380	341	307	284	292	348	396	406	364	315	444	609	540	632	547	457	388	383	401		
16-Nov	479	424	397	367	359	551	502	415	371	382	318	(387)	432	396	458	460	403	340	(329)	506	540	500	433	373	332	402	469		350
13-Dec	446	400	352	342	511	603	522	434	380	328	346	<mark>468</mark>	486	448	430	389	366	372	358										

Figure 1: Pixel diagrams of 1974, 1986, 1994, 2003 and 2017 peaks

Laboratoire de Recherche en Energétique et Météorologie de l'Espace

8

Solar flux structure and magnetospheric activities

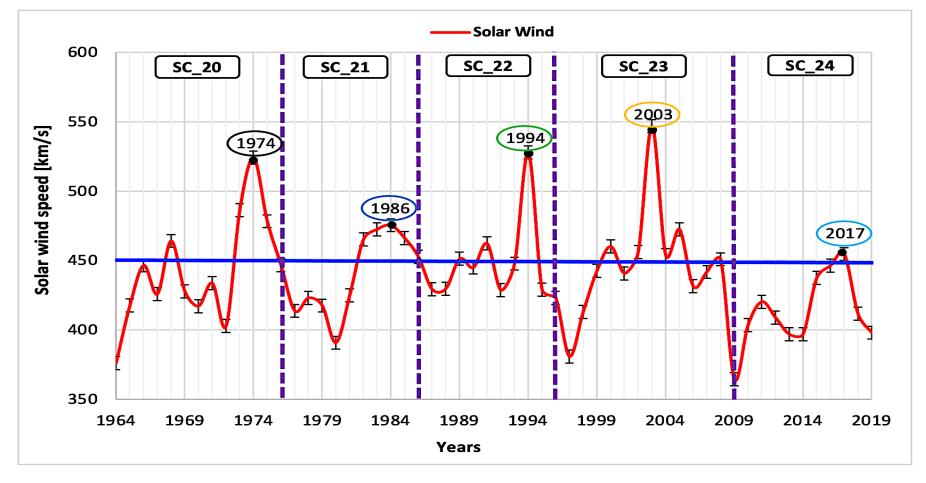
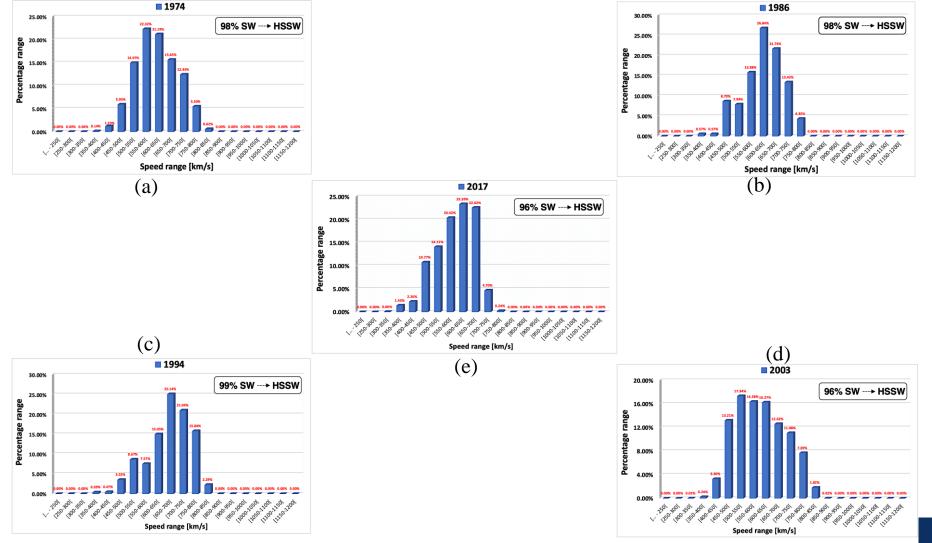
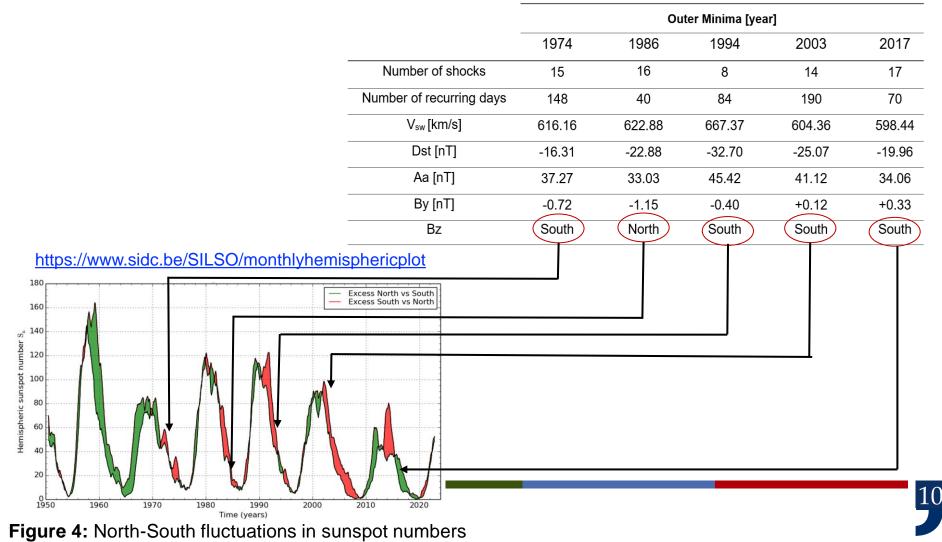


Figure 2: Annual evolution of the daily average solar wind speed from 1964-2019.

Solar flux structure and magnetospheric activities




Figure 3: Annual evolution of the daily average solar wind speed from 1964-2019.

Solar flux structure and magnetospheric activities

Table 1: Summary of solar events of outer minima

Laboratoire de Recherche en Energétique et Météorologie de l'Espace

Geoeffectiveness of the outer minimum of SC 20-24.

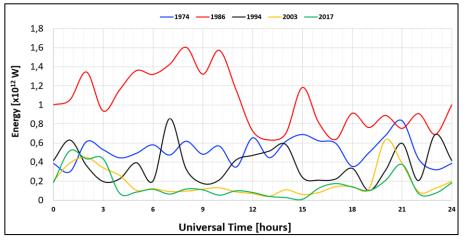


Figure 5: Power upstream of the Earth's magnetosphere

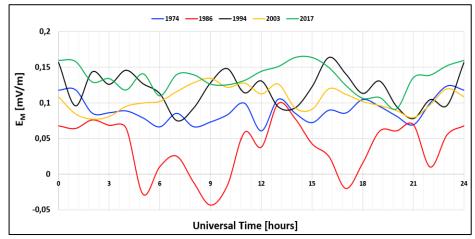


Figure 6: Daily variation in E_M field

		Outer Minima [year]											
	1974	1986	1994	2003	2017								
Bz[nT]	-0.02	0.65	-0.33	-0.22	-0.60								
E _M [mV/m]	0.09	0.04	0.12	0.10	0.12								
E _{in} [x10 ¹² W]	1.58	1.52	1.88	1.70	1.65								
Ein & EM	60%	76%	-59%	64%	56%								

Table 2: Correlation of some solar wind parameters

Laboratoire de Recherche en Energétique et Météorologie de l'Espace

Geoeffectiveness of the outer minimum of SC 20-24.

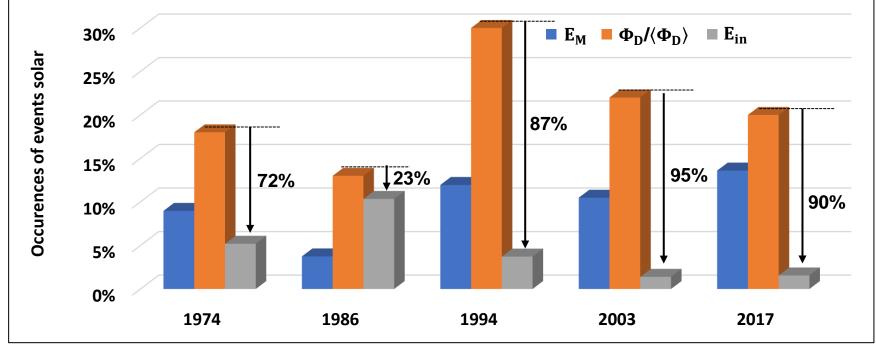


Figure 7: Occurrence E_M field, E_{in} and $\Phi_D/\langle \Phi_D \rangle$

Table 3: Correlation of some solar wind parameters	5.
--	----

	Outer Minima [year]										
	1974	1986	1994	2003	2017						
$\Phi_{ m D}/\langle\Phi_{ m D} angle$	18%	13%	30%	22%	20%						
Ein & EM	60%	76%	-59%	64%	56%						

During the peaks of the outer minima of SC :

- At high speeds, the normalized daytime reconnection rate is likely to be improved when the IMF-Bz is antiparallel to the geomagnetic field.
- Significant geomagnetic activity is sometimes present even in the absence of such important ICMEs.
- HSSW represent the stability criterion for areas that are particularly close to the outer minimum of solar cycles.
- For high By intensities with a north-pointing CMI-Bz, the trapping and energization of HSSW particles in the Earth's magnetic cavity has an enhanced influence on the magnetospheric convection electric field.

Laboratoire de Recherche en Energétique et Météorologie de l'Espace

THANKS FOR YOUR ATTENTION !!