# Natural Hazards in Brazil – Challenges and helpful tools

Lincoln Muniz Alves, Laercio Namikawa, Eymar Lopes INPE/CGCP/DIIAV lincoln.alves@inpe.br





#### Introduction



Credit: Minas Gerais Civil Defense



[Credit: Yoda Adaman | Unsplash]

"It is indisputable that human activities are causing climate change, making extreme climate events, including heat waves, heavy rainfall, and droughts, more frequent and severe"

"Climate change is already affecting every region on Earth, in multiple ways. The changes we experience will increase with further warming."



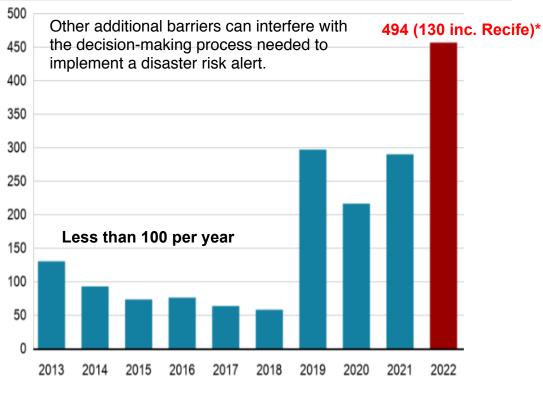


#### Introduction



Photo: Amazon satellite

The focus of this presentation is to discuss how INPE is utilizing space data and technology, specifically through the platforms TerraMA2 and AdaptaBrasil, to address Brazil's unique environmental challenges, mitigate natural disasters, and inform public policy for climate adaptation.






# The scale of the problem in Brazil



# Number of deads consequence of disasters triggered by heavy rainfall in Brazil



Fonte: Confederação Nacional dos Municípios / Defesas Civis

BBC





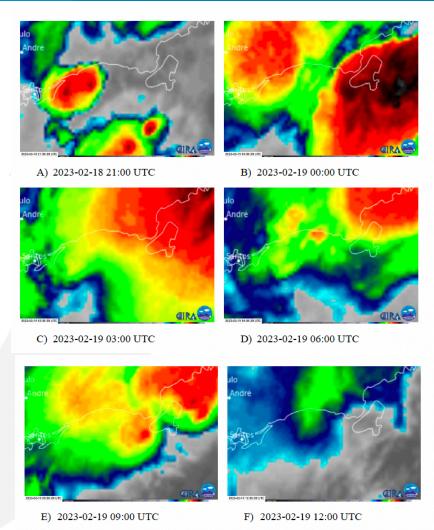
BBC





On February 18<sup>th</sup>-19<sup>th</sup>, 2023, heavy rainfall of 680 mm in less than 24 hours triggered multiple fatal and flash floods landslides in the city.

This is the highest rainfall in all of Brazil in modern history.


This trigger water-saturated soil led to deadly floods, debris flow, and landslides resulting in 65 casualties and damages.



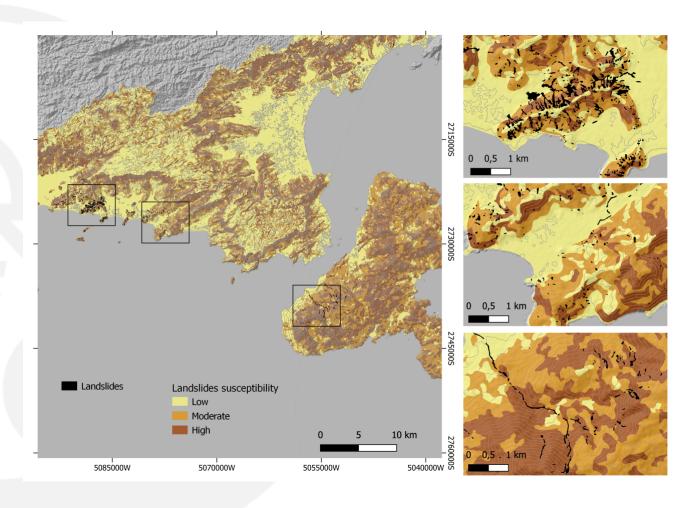




GOES-16 IR satellite images, with 6-hours interval, from 2100 UTC on 18 February to 12:00 UTC of 19 February. Fonte: Colorado State University - <a href="https://rammb-slider.cira.colostate.edu/">https://rammb-slider.cira.colostate.edu/</a>





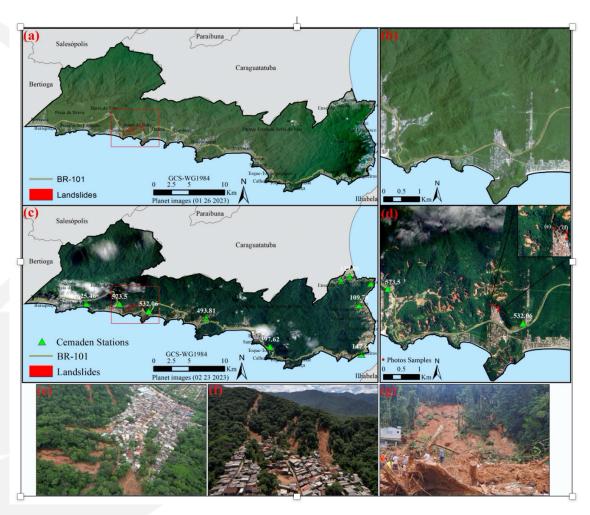



### **World Records**

https://www.weather.gov/ owp/hdsc\_world\_record

| Duration                                | Amount<br>(mm)                              | (in)                               | Location                                       | Lat<br>(deg) | Long<br>(deg) | Start date   |
|-----------------------------------------|---------------------------------------------|------------------------------------|------------------------------------------------|--------------|---------------|--------------|
|                                         | **38                                        | **1.50                             | Barot, Guadeloupe, West Indies                 | 16.25        | -61.45        | 26 Nov 1970  |
| 1-minute                                | 31                                          | 1.23                               | Unionville, Maryland, USA                      | 39.45        | -77.18        | 4 Jul 1956   |
| 5-minute                                | 63                                          | 2.48                               | Porto Bello, Panama                            | 9.55         | -79.65        | 29 Nov 1911  |
| 8-minute 12                             |                                             | 4.96                               | Fussen, Bavaria, Germany                       | 47.87        | 12.17         | 25 May 1920  |
| 15-minute 198 7.80 Plumb Point, Jamaica |                                             | Plumb Point, Jamaica               | 17.93                                          | -76.78       | 12 May 1916   |              |
| 20-minute                               | 20-minute 206 8.11 Curtea de Arges, Romania |                                    | 45.12                                          | 24.42        | 7 Jul 1889    |              |
| 30-minute                               | 0-minute 280 11.0 Sikeshugou, Hebei, China  |                                    | 41.78                                          | 117.93       | 3 Jul 1974    |              |
| 42-minute                               | 305                                         | 12.0                               | Holt, Missouri, USA                            | 39.45        | -94.33        | 22 Jun 1947  |
|                                         | *401                                        | *15.8                              | Shangdi, Inner Mongolia, China                 | 42.27        | 119.13        | 3 Jul 1975   |
| COit                                    | 381                                         | 15.0                               | Smethport, Pennsylvania, USA                   | 41.87        | -78.34        | 18 Jul 1942  |
| 60-minute                               | 305                                         | 12.0                               | Holt, Missouri, USA                            | 39.45        | -94.33        | 22 Jun 1947  |
|                                         | 305                                         | 12.0                               | Kilauea Plantation, Kauai, Hawaii, USA         | 22.21        | -159.41       | 24 Jan 1956  |
| 72-minute                               | 440 17.3 Gaoj, Gansu, China                 |                                    | 34.85                                          | 104.67       | 12 Aug 1985   |              |
| 2-hour                                  | 489 19.3 Yujiawanzi, Inner Mongolia, China  |                                    | 41.50                                          | 118.93       | 19 Jul 1975   |              |
| 2.5-hour                                | 550                                         | 21.7 Bainaobao, Hebei, China 41.58 |                                                | 41.58        | 114.30        | 25 Jun 1972  |
| 2.75-hour                               | 559                                         | 22.0                               | Woodward Ranch (D'Hanis 17 NNW),<br>Texas, USA | 29.49        | -99.38        | 31 May 1935  |
| 3-hour                                  | 600                                         | 23.6                               | Duanjiazhuang, Hebei, China                    | 40.33        | 114.58        | 28 June 1973 |
| 6-hour                                  | 830                                         | 32.7                               | Linzhuang, Henan, China                        | 33.05        | 113.65        | 7 Aug 1975   |
| 8-hour                                  | 1050                                        | 41.3                               | Muduchaideng, Inner Mongolia, China            | 38.88        | 109.50        | 1 Aug 1977   |
| 10-hour                                 | *1400                                       | *55.1                              | Muduchaideng, Inner Mongolia, China            | 38.88        | 109.50        | 1 Aug 1977   |
| 12-hour                                 | *1400                                       | *55.1                              | Muduchaideng, Inner Mongolia, China            | 38.88        | 109.50        | 1 Aug 1977   |
|                                         | 1144                                        | 45.0                               | Foc-Foc. Réunion Island                        | -21.23       | 55.68         | 7 Jan 1966   |
|                                         |                                             |                                    | E INOVA                                        | ÇÃO          |               |              |

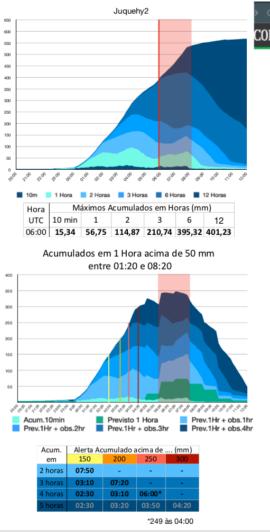
Susceptibility to landslides in São Sebastião and Ilhabela and scars from landslides triggered during the February 18<sup>th</sup> and 19<sup>th</sup>, 2023 event, in São Paulo North Coast Landslides were mapped from satellite images provided by Rede MAIS/MJSP (including material © 2023 Planet Labs Inc.). Susceptibility map source: CPRM/IPT (2017).









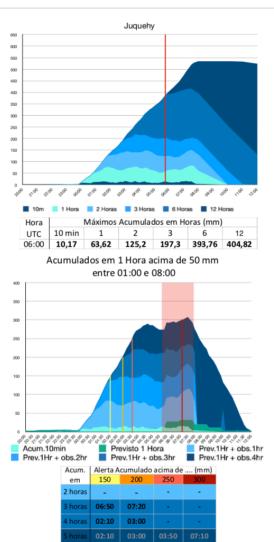


PlanetScope satellite image showing before the disaster (a), with a zoom in Barra do Sahy (b) and after (c,d). Figures (e, f and g) shows photos in Barra do Sahy after the landslides. The locations of each photo can be seen in figure (d).







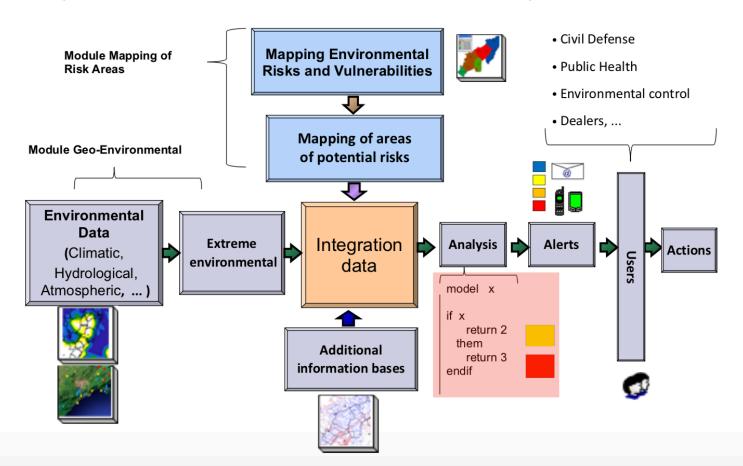




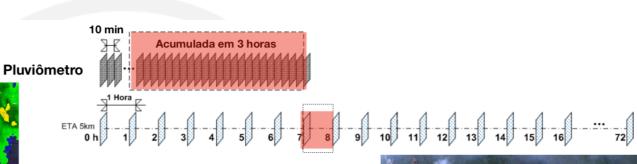

# CORREIO DO POVO

ter contato com ela (a irmã) às 4 horas." As duas irmãs ainda esperam notícias da mãe, que mora na vila da Baleia e se encontrava incomunicável desde sábado.

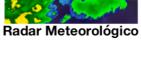
A moradora e líder comunitária de Barra do Sahy Nalda Araújo também relatou momentos de terror e dezenas de casas soterradas. "Era por volta das 3 horas quando a gente ouviu uma gritaria. Saímos na rua e o pessoal disse 'Corre que o morro está desabando'. Eu moro a mais de 100 metros, mas, quando olhei para trás, o morro estava descendo com casa, carro, pessoas."

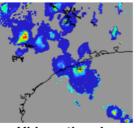






#### Introduction to TerraMA2

#### Plataforma para Monitoramento, Análise e Alerta Monitoring, Analysis and Alert Platform


TerraMA2 software que provê a Infraestrutra Tecnológica necessária para implementar um Sistema de Monitoramento e Alerta de para riscos ambientais




# Alert model - Case study



Observation + Forecast





Hidroestimador

local var1 = maximo\_eta ('eta5km', 1)
local var2 = accum ('pluviometro', 3)

local var3 = var1 + var2 if var3 > 250 return 3 else if var3 > 200 return 2 else if var3 > 150 return 1



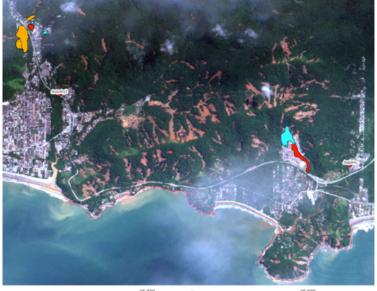
Juquehy2

| Acum.   | Alerta Acumulado acima de (mm) |       |        |       |  |  |
|---------|--------------------------------|-------|--------|-------|--|--|
| em      | 150                            | 200   | 250    | 300   |  |  |
| 2 horas | 07:50                          | -     | -      | -     |  |  |
| 3 horas | 03:10                          | 07:20 | -      | -     |  |  |
| 4 horas | 02:30                          | 03:10 | 06:00* | -     |  |  |
| 5 horas | 02:30                          | 03:20 | 03:50  | 04:20 |  |  |



| Acum.   | Alerta Acumulado acima de (mm) |       |       |       |  |  |
|---------|--------------------------------|-------|-------|-------|--|--|
| em      | 150                            | 200   | 250   | 300   |  |  |
| 2 horas | -                              | -     | -     | -     |  |  |
| 3 horas | 06:50                          | 07:20 | -     | -     |  |  |
| 4 horas | 02:10                          | 03:00 | -     | -     |  |  |
| 5 horas | 02:10                          | 03:00 | 03:50 | 07:10 |  |  |

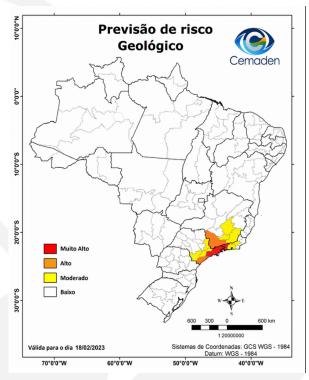


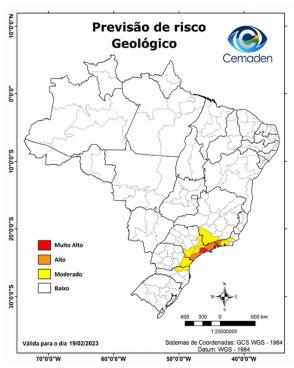





## **Alert model**




03:10




Juquehy
Alerta às
02:10
03:00
03:50



Daily forecasts of geological risk (landslides and debris flow) is sued by CEMADEN valid from February 18<sup>th</sup> and 19<sup>th</sup> 2023. Source: CEMADEN.









#### ADAPTABRAZIL MCTI

https://adaptabrasil.mcti.gov.br/



**CORONAVÍRUS (COVID-19)** 

Simplifique! Pa

Participe Acesso à informação

Legislação

Canais





Início

Dados e Impactos

Notícias

Sobre

Contato

# AdaptaBrasil MCTI

Índices e Indicadores de risco de impactos das mudanças climáticas no Brasil, integrados em uma única plataforma

Acesse a plataforma

"Aims to consolidate, integrate and disseminate information to support the advances on the analysis of observed and projected climate change in the Brazilian territory, informing decision makers for planning adaptation actions and strategies.



Brasil

558 Microrregiões

**Todos os Impactos** 

Água Chuva

superfície

Mais sobre esse dado

Exposição Biofísica

Ocupação do Espaço

#### https://adaptabrasil.mcti.gov.br/

Sobre o AdaptaBrasil

Contato

Notícias



Índice de Exposição para Chuva

Magnitude do contato entre o sistema socioecológico e as perturbações climáticas relacionada a chuvas intensas por meio da distribuição de elementos de

Copiar URL Mapa ▼ Localizar **Download** Opções Presente Suriname Colômbia Bolívia Índice de Exposição Paraguai South Chile Muito alto Atlantic Alto Ocean Médio 0 Uruguai Baixo Muito baixo Buenos Aires + Argentina Dado indisponível

Dados e Impactos

Início









# Importance of Multi-Stakeholder Engagement

Oficina Indicadores: Brasil (julho/2









#### Workshop of Climate Risks and Adaptation



Main concepts of climate risks and adaptation



Based on customized study case and guided exercises



Web tools, mental maps, group interaction



Cooperation for Building Capacity







#### **Final Remarks**

Although alerts for high-risk hydrological and geological disasters were issued in a timely manner, they did not effectively reach or prompt action from all vulnerable populations. This underscores the need for a more comprehensive Early Warning System (EWS) that not only identifies hazards but also ensures that warnings are understood and acted upon by those at risk.

A multi-level governance approach that combines EWS with contingency plans can significantly reduce vulnerability and exposure, ultimately saving lives in the face of climate-related disasters







# OBRIGADO THANK YOU FOR YOUR ATTENTION

**Lincoln Muniz Alves** 

lincoln.alves@inpe.br



INPE/CGCT/DIIAV
São José dos Campos
São Paulo, Brasil
Telefone: +55 (12) 3208 7797
www.inpe.br

