

United Nations/Philippines Workshop on the Applications of Global Navigation Satellite Systems

Development of space weather forecast system in Thailand

<u>Acharaporn Bumrungkit^{1*}</u>, Rungnapa Kaewthongrach¹, Wanida Panup¹, Jaruwan Sutthana¹, Keerati Puttasuwa¹, Phasawee Saingyen¹, Sittiporn Channumsin¹, and Pornchai supnithi²

¹Space Technology Research Center, Geo-Informatics and Space Technology Development Agency, Thailand ²School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Thailand

23 April 2024

Outline

- 1. Background and Motivations
 - Policy and regulator framework for space activities Research and Development
 - Scientific and technical research and development
- 2. Research and Development
 - Domestic cooperation
 - International activities and cooperation
- 3. TEC results in the period of High solar activity
- 4. Conclusions
- 5. Future plan and Activity

A. Policy and regulator framework for space activities

Guideline		Summary		
A. Policy and regulatory framework for space activities				
	A.1	Adopt, revise and amend, as necessary, national regulatory frameworks for outer space activities		
A.2		Consider a number of element when developing, revising or amending, as necessary, national regulatory frameworks for outer space activities		
A.3		Supervise national space activities		
A.4		Ensure the equitable, rational and efficient use of the radio frequency spectrum and the various orbital regions used by satellites		
	A.5	Enhance the practice of registering space objects		

A. Policy and regulator framework for space activities

<u>A.1</u>

- Space Affairs Act BE (the Draft Act), developed based on LTS, is on process. (Expected approval : 2025)
- The Master Plan has been approved by the Cabinet.

<u>A.5</u>

 All operations require to register the space objects and GISTDA is assigned to be focus point for the registration.

GISTDA

15 Years of National Space Master Plan (2023-2037)

Note : Long-term sustainability of outer space activities (LTS) and IADC space debris guideline are considered in National Space Act and SSA&STM policy. 5

D. Scientific and technical research and development

D. Scientific and technical research and development					
D.1	Promote and support research on the development of ways to support sustainable exploration and use of outer space				
D.2	Investigate and consider new measure to manage the space debris population in the long term				

2. Research and Development Domestic cooperation

Thai Space Physics & Space Weather Consortium

- Thailand is in low-latitude regions [-15,+15 deg] or Equatorial regions.
 - Suitable for monitoring the atmosphere, especially lonosphere

Earth's magnetic field

2. Research and Development

Domestic cooperation

Welcome	MAIN MENU
Welcome to the Thai GNSS and Space Weather Information Data Center hosted at King Mongkut's Institue of	Home
Technology Ladkrabang (KMITL). In the future, we hope to cover the forecasting service as well.	Observation
The Data Center serves the following purposes:	Solar Activity
 Maintain the GNSS, lonopheric and sensor database from the stations which we operate and maintain, data servers and backup. These data are important for the study of the lonophere. Troposphere, GRS/GNSS Positioning, Charlens, Jesseng ind execution, Califlar entrome instruction, Earthwards and the study of the index. 	Space Environment
	Ionosphere and GNSS
	Services
decides, reconsistent angenet, second contransation can repair study anong cores. 2. Provide the observation of the followings: • Solar parameters	Data Product (Beta)
	Data Request

KMITL

Center of Excellence in GNSS and Space Weather, KMITL

NARIT

National Astronomical Research Institute of Thailand PRINCE OF SONGKLA UNIVERSITY SCIENCE PARK

International activities and cooperation

Starting of Space Weather project

Memorandum of Understanding (MOU) on Space Weather (SW) technology between GISTDA and NICT

Dr. Anond Snidvongs Na Ayutthaya and Dr. TOKUDA Hideyuki

MOU signing ceremony on 29 November 2019

- In June 2019, GISTDA approached NICT for the first time about developing a space weather forecast service.
- The collaboration between GISTDA and NICT was concluded, and the MOU was signed in November 2019.

Gistda NICT

International activities and cooperation

• UN COPUOS cooperation

Share statement of space weather activities in Thailand

• NICT cooperation

Asia-Oceania Space Weather Alliance (AOSWA)

• International Space Weather Initiative (ISWI)

Space Weather Operation Room at GISTDA

Space weather prototype system (website, UI and Database)

**Deployment is in progress

Space weather prototype system (website, UI and Database)

**Deployment is in progress

Sunspots

สำนักงานพัฒนาเทคโนโลยีอวกาศและภูมิสารสนเทศ (องค์การมหาชน) Geo-Informatics and Space Technology Development Agency (Public Organization)

Solar cycle

SOLAR CYCLE PROGRESSION

[https://www.swpc.noaa.gov/products/solar-cycle-progression]

The solar cycle period is approximately 11 years. Since 2023, solar activity has been very intense. The highest solar activity is expected in 2025, during the 25th cycle

TISTDA

Earth's magnetic field

- Thailand is in low-latitude regions [-15,+15 deg] or Equatorial regions.
- Suitable for monitoring the atmosphere, especially

lonosphere

Thailand located near the magnetic equator, then free electron over the area are variation [1].

[1] Maruyama, T., Kawamura, M., Saito, S., Nozaki, K., Kato, H., Hemmakorn, N., ... & Duyen, C. H. (2007, July). Low latitude ionosphere-thermosphere dynamics studies with inosonde chain in Southeast Asia. In Annales Geophysicae (Vol. 25, No. 7, pp. 1569-1577).

Equatorial Plasma Bubble Phenomena (EPB)

 The EPBs due to non-uniform electron density areas and they grow along the magnetic field line. Multiple EPBs are observed quite common.

3-D Plasma tubes drifting overhead simulated by Cleo Loi et.al., Curtin University, Australia [2].

GISTDA

No

Thai GNSS CORS : 236 Stations

ศูนย์ข้อมูลค่าอ้างอิงพิกัดแบบต่อเนื่องแห่งชาติ lational CORS Data Center

GNSS receiver operated by

- Department of Land (DOL)
- Royal Thai Survey Department (RTSD)
- Department of Public Works and Town & Country Planning (DPT)
- King Mongkut's Institute of Technology Ladkrabang (KMITL)
- Geo-Informatics and Space Technology Development Agency (GISTDA)
- Chulalongkorn University
- Hydro Informatics Institute (HII)
- National Institute of Metrology Thailand (NIMT)
- All Sky Imager
- Ionosonde
- Beacon
- VHF radar
- ★ Magnetometer

Magnetic equator

Magnetometer

CAMBODIA

Phnom Penh

Thailand AGENCY Space 172 Zoom to **Observation** facility

MHDU

Slant Total Electron Content (STEC)

STEC is the total number of electron density in slant path between the satellite and the receiver, expressed in TECU (1 TECU = 10^{16} electrons/m²)

Slant Total Electron Content

 $STEC = \int N_e ds$ (TECU)

- N_e : Electron density (electrons/m³)
 S : Distance along the propagation path

Ionospheric delay

$$I = \frac{40.3 \times STEC}{f^2}$$
 (m)

I = lonospheric delay (m)

• STEC = Slant Total electron content (TECU) f = Frequency (Hz.)

*L1 = 1575.42 MHz, L2 = 1227.60 MHz, L5 = 1176.45 MHz 19

STEC obtained from GNSS signals (RINEX files)

• For dual-frequency GNSS receiver, the Slant TEC can be derived by both pseudorange and carrier phase linear combinations.

$$STEC_{p} = K(P_{2} - P_{1})$$
$$STEC_{L} = K(L_{1} - L_{2})$$

STEC_P = STEC pseudorange measurement (TECU)
STEC_L = STEC carrier phase measurement (TECU)
P₁ = Pseudorange using C/A code on L1
P₂ = Pseudorange using P-Code on L2
L₁ = Pseudorange using Phase measurements on L1
L₂ = Pseudorange using Phase measurements on L2
K = 9.5196 for TEC expressed in TECU

 $STEC_{L_{adj}} = STEC_{L} + (STEC_{P} - STEC_{L})_{arc}$

 $(\overline{STEC_P} - \overline{STEC_L})$ = Mean between different STEC

$$STEC = STEC_{L_{adj}} + b_r + b_s$$

- STEC = Adjusted STEC
- STEC_{L adj} = Adjusted STEC_L
- $b_r = The receiver bias$

•

• $b_s =$ The satellite bias

•The $STEC_p$ is generally noisier than $STEC_L$. However, the $STEC_L$ has a **phase ambiguity** that can lead to negative level.

21

Rate of TEC change index (ROTI)

The ROTI is used for ionospheric irregularities detection at one station for one day, defined by <u>Standard deviation</u> of rate of TEC change with 5-minute windows. In this work, we determined <u>0.5 TECU/min as the threshold.</u>

ROT(i) = STEC(i+1) - STEC(i)

$$ROTI = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (ROT(i) - \overline{ROT})^2}$$

i = Index of time
N = Window size (minutes)

STEC and ROTI at KMITL station

TEC and ROTI at KMI6 station date: 2023/04/12 Total Electron Content (TEC) 200 (TECU) 150 S 10 Rate of TEC change index (ROTI) .9 9.8 NO 0.6 20 10

Time (UTC)

of TEC and ROTI in 2023

Example results

22

GISTDA

VTEC and ROTI plot VS K-index in November 2023

23

GISTDA

GISTDA

24

VTEC and ROTI plot VS K-index from 3-10 November 2023

Conclusions

- 1. Thailand not only recognizes the significance of these guidelines but also actively embraces international cooperation, seeking opportunities to exchange best practices with the global community in order to ensure the enduring and responsible utilization of outer space.
- 2. Thailand's welcome for international collaborations across all aspects to preserve of the outer space environment for the benefit of future generations.
- 3. During periods of high solar activity, frequent geomagnetic storms occur, leading to higher Total Electron Content (TEC) values and more severe ionospheric irregularity.

Future Plan

 To be part of ISES member for sharing the data and to deliver operational space weather services over Thailand region.

At present, there are twenty-two Members distributed around the globe. These centers are located in China (Beijing), USA (Boulder), Russia (Moscow), India (New Delhi), Canada (Ottawa), Czech Republic (Prague), Japan (Tokyo), Australia (Sydney), Sweden (Lund), Belgium (Brussels), Poland (Warsaw), South Africa (Hermanus), South Korea (Jeju), Brazil (São José dos Campos), Austria (Treffen) and UK (Exeter). The European Space Agency (Noordwijk) is a collaborative expert center providing a venue for data and product exchange for activities in Europe.

GISTDA Host AOSWA2024

https://aoswa2024.gistda.or.th/

GEO-INFORMATICS & SPACE TECHNOLOGY DEVELOPMENT AGENCY (PUBLIC ORGANIZATION) 88 MOO 9 TAMBON THUNG SUKALA, AMPHOE SIRACHA, CHONBURI, THAILAND, 20230 TEL (+66) 033046300 | FAX (+66) 033046317 E-mail: acswa2024@gistda.or.th | Website: www.acswa2024.gistda.or.th

Acknowledgement

We gratefully acknowledge the Excellence Center in GNSS and Space Weather, Thailand provided the RINEX files data and original program to compute the results.

Jasker Gistda

Thank you for your kind attention

Q/A

Acharaporn Bumrungkit, Ph.D.

Space Technology Research Center (S-TREC), Space Technology Development Office GEO-INFORMATICS AND SPACE TECHNOLOGY DEVELOPMENT AGENCY (GISTDA) E-mail: acharaporn.bum@gistda.or.th